Skip to main content

Advertisement

Log in

Modified range equation for exact modeling and design optimization of active laser remote sensing systems

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An exact modeling for laser target illumination and electro-optic detection parameters used in most common laser remote sensing systems, such as laser microphones, LiDARs, laser range finders, laser spot tracking, laser designation, stand-off laser spectroscopy (Raman, LIBS, LIF,…), laser imaging of remote targets and all laser transceiver system having a laser source and an electro-optical detection measure in one assembly. The model makes possible to embed most basic parameters in one equation to ease the design of the main system components from engineering point of view, instead of the currently used general models. The resulting equation corrects calculations for short standoff target detection parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\alpha\) :

Linear absorption coefficient of atmosphere for the laser wavelength (m−1)

\(\alpha_{Q}\) :

Linear absorption coefficient of atmosphere for the peak target emission wavelength (m−1)

\(\beta\) :

Optical magnification (dimensionless)

\(\lambda\) :

Laser wavelength (m)

\(\delta\) :

Laser beam divergence (Rad)

\(\varepsilon\) :

Optical system transitivity (dimensionless)

\(\eta\) :

Responsivity of the electro-optic detector (A W−1)

θ:

Inclination of target surface with respect to the axe of the falling laser radiation (deg)

\(\varphi\) :

Diameter of the optical collector (m)

\(\Omega_{S}\) :

Solid angle in front of the laser source (Rad)

\(\Omega_{T}\) :

Solid angle in front of the target (Rad)

\(A_{D }\) :

Surface area of electro-optical detector (m2)

\(A_{I }\) :

Surface area of laser spot in the image plane (m2)

\(A_{R }\) :

Surface area of the receiver collector (m2)

\(A_{T}\) :

Surface area of the target laser spot (m2)

\(B\) :

Feedback loop

\(C\) :

Radius of the circle of confusion (m)

\(d\) :

Distance to target (m)

\(d_{L}\) :

Theoretical distance at which the applicability limit of standard range equation ends (m)

\(F\) :

Optical collector focal length (m)

\(\Delta F\) :

Optical collector focal depth (m)

\(f\) :

f-number of the optical collector

\(G\) :

Amplifier gain (dimensionless)

\(G_{n}\) :

Gain of the n-th amplifier (dimensionless)

\(h_{D }\) :

Radius of target laser spot image on the detector (m)

\(h_{T}\) :

Radius of the laser spot image on the target (m)

\(I_{R }\) :

Intensity of the diffuse laser radiation from the target at the receiver aperture

\(I_{S }\) :

Intensity of the laser source radiation (W m−2)

\(I_{T }\) :

Intensity of the diffuse laser radiation from target vicinity (W m−2)

\(J\) :

Electro-optic detector photo-current (A)

\(K\) :

Scattering coefficient of the Lambertiant target (dimensionless)

\(l\) :

Target laser spot image distance from optical collector (m)

\(M\) :

Ratio between \(A_{T}\) and \(A_{D}\) (dimensionless)

\(N\) :

Noise factor (dimensionless)

\(N_{n}\) :

Noise factor of the n-th amplifier (dimensionless)

\(P_{D}\) :

Received laser power at the electro-optical detector window (W)

\(P_{S }\) :

Laser source beam optical power (W)

\(Q\) :

Quantum efficiency of the laser-matter interaction (dimensionless

References

  • Ayoub, H.S., El-sherif, A.F., Hassan, H.H., Khairy, S.A.: Young’s modulus of tungsten at elevated temperatures using synchronous laser shadow vibrometry. In: The International Conference on Mathematics and Engineering Physics (ICMEP-9), vol. 9, pp. 1–21. Military Technical College (2018)

  • Ayoub, H.S., El-Sherif, A.F., Hassan, H.H., Khairy, S.A., Elbashar, Y.H.: A Laser Shadowgraphy Method for Studying the Vibrations of Incandescent Solids. Lasers in Engineering, vol. 44. Old City Publishing (2019)

  • Carter, J.C., Angel, S.M., Lawrence-Snyder, M., Scaffidi, J., Whipple, R.E., Reynolds, J.G.: Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument. Appl. Spectrosc. 59(6), 769–775 (2005)

    Article  ADS  Google Scholar 

  • Cole, W.P., Marciniak, M.A., Haeri, M.B.: Atmospheric-turbulence-effects correction factors for the laser range equation. Opt. Eng. 47(12), 126001–126011 (2008)

    Article  ADS  Google Scholar 

  • Darwiesh, M., El-Sherif, A.F., Ayoub, H.S., El-sharkawy, Y.H., Hassan, M.F., Elbashar, Y.H.: Hyperspectral laser imaging of underwater targets. J. Opt. 47(4), 553–560 (2018)

    Article  Google Scholar 

  • El-Sherif, A.F., Ayoub, H.S., El-Sharkawy, Y.H., Gomaa, W., Hassan, H.H.: The design and implementation of photoacoustic based laser warning receiver for harsh environments. Opt. Laser Technol. 98, 385–396 (2018)

    Article  ADS  Google Scholar 

  • Eto, S., Ichikawa, Y., Ogita, M., Asahi, I.: Design of light receiver system for measurement of resonance Raman spectra in deep ultraviolet wavelength region. In: Electro-Optical Remote Sensing XIII, vol. 11160, p. 111600G. International Society for Optics and Photonics (2019)

  • Filin, S.: Recovery of systematic biases in laser altimetry data using natural surfaces. Photogram. Eng. Remote Sens. 69(11), 1235–1242 (2003)

    Article  Google Scholar 

  • Gaft, M., Nagli, L.: UV gated Raman spectroscopy for standoff detection of explosives. Opt. Mater. 30(11), 1739–1746 (2008)

    Article  ADS  Google Scholar 

  • Garachtchenko, A.V., Martin, S.S.: Low-noise amplifier. U.S. Patent 5,963,097, issued October 5, 1999

  • Gares, K.L., Hufziger, K.T., Bykov, S.V., Asher, S.A.: Review of explosive detection methodologies and the emergence of standoff deep UV resonance Raman. J. Raman Spectrosc. 47(1), 124–141 (2016)

    Article  ADS  Google Scholar 

  • Gawad, A.L., El-Sharkawy, A., Ayoub, H.S., El-Sherif, A.F., Hassan, M.F.: Classification of dental diseases using hyperspectral imaging and laser induced fluorescence. Photodiag. Photodyn. Ther. 25, 128–135 (2019)

    Article  Google Scholar 

  • Guenther, G.C.: Airborne lidar bathymetry. In: Digital Elevation Model Technologies and Applications: The DEM User’s Manual 2, pp. 253–320 (2007)

  • Gulati, K.K., Gulia, S., Gambhir, T., Kumar, N., Gambhir, V., Reddy, M.N.: Standoff detection and identification of explosives and hazardous chemicals in simulated real field scenario using time gated Raman spectroscopy. Defence Sci. J. 69(4), 342–347 (2019)

    Article  Google Scholar 

  • Hecht, J.: Lidar for self-driving cars. Opt. Photon. News 29(1), 26–33 (2018)

    Article  ADS  Google Scholar 

  • Hillis, D.B.: Infrared sniper detection enhancement. U.S. Patent 5,686,889, issued November 11, 1997

  • Kauppinen, I.: Optical audio microphone arrangement including a Michelson type interferometer for providing a phase difference between different parts of light beams. U.S. Patent 7,521,668, issued April 21, 2009

  • Kruapech, S., Widjaja, J.: Laser range finder using Gaussian beam range equation. Opt. Laser Technol. 42(5), 749–754 (2010)

    Article  ADS  Google Scholar 

  • Kutila, M., Pyykönen, P., Ritter, W., Sawade, O., Schäufele, B.: Automotive LIDAR sensor development scenarios for harsh weather conditions. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 265–270. IEEE (2016)

  • Lal, A.K., Hess, C.F., Ernesto Hurtado, H.Z.L., Markov, V.B., Aranchuk, V.: Multi-beam heterodyne laser Doppler vibrometer. U.S. Patent 6,972,846, issued December 6, 2005

  • Lazic, V., Palucci, A., De Dominicis, L., Nuvoli, M., Pistilli, M., Menicucci, I., Colao, F., Almaviva, S.: Integrated laser sensor (ILS) for remote surface analysis: application for detecting explosives in fingerprints. Sensors 19(19), 4269–4284 (2019)

    Article  Google Scholar 

  • Lecocq, C., Deshors, G., Lado-Bordowsky, O., Meyzonnette, J.L.: Sight laser detection modeling. In: Laser Radar Technology and Applications VIII, vol. 5086, pp. 280–286. International Society for Optics and Photonics (2003)

  • Li, Y., Cheung, C.S., Kogou, S., Liggins, F., Liang, H.: Standoff Raman spectroscopy for architectural interiors from 3–15 m distances. Opt. Express 27(22), 31338–31347 (2019)

    Article  ADS  Google Scholar 

  • Meraz, N., Tuell, G.: Optical design of a deep water airborne bathymetric lidar. In: Laser Radar Technology and Applications XXIV, vol. 11005, p. 1100507. International Society for Optics and Photonics (2019)

  • Misra, A.K., Acosta-Maeda, T.E., Porter, J.N., Egan, M.J., Sandford, M.W., Oyama, T., Zhou, J.: Remote Raman detection of chemicals from 1752 m during afternoon daylight. Appl. Spectrosc. 74(2), 233–240 (2019). https://doi.org/10.1177/0003702819875437

  • Misra, A.K., Sharma, S.K., Bates, D.E., Acosta, T.E.: Compact standoff Raman system for detection of homemade explosives. In: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI, vol. 7665, p. 76650U. International Society for Optics and Photonics (2010)

  • Misra, A.K., Acosta-Maeda, T.E., Porter, J.N., Berlanga, G., Muchow, D., Sharma, S.K., Chee, B.: A two components approach for long range remote Raman and laser-induced breakdown (LIBS) spectroscopy using low laser pulse energy. Appl. Spectrosc. 73(3), 320–328 (2019)

    Article  ADS  Google Scholar 

  • Muscatell, R.P.: Laser microphone. U.S. Patent 4,479,265, issued October 23, 1984

  • Pradell, L., Comeron, A., Ramirez, A.: A general analysis of errors in noise measurement systems. In: 1988 18th European Microwave Conference, pp. 924–929. IEEE (1988)

  • Scalise, L., Paone, N.: Laser Doppler vibrometry based on self-mixing effect. Opt. Lasers Eng. 38(3–4), 173–184 (2002)

    Article  Google Scholar 

  • Scott, S.G., Varga, K., Hiett, J.: Anti-sniper targeting and detection system. U.S. Patent Application 13/385,040, filed August 1, 2013

  • Sharma, R.C., Kumar, S., Kumar, S., Mann, M., Sharma, M.: Photoacoustic remote sensing of suspicious objects for defence and forensic applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 224, 117445–117450 (2020)

    Article  Google Scholar 

  • Teetzel, J.W.: Laser range finding apparatus. U.S. Patent 5,555,662, issued September 17, 1996

  • Veligdan, J.T.: Optical microphone. U.S. Patent 6,014,239, issued January 11, 2000

  • Verghese, S.: Self-driving cars and lidar. In: CLEO: Applications and Technology, pp. AM3A-1. Optical Society of America (2017)

  • Wallin, S., Pettersson, A., Östmark, H., Hobro, A.: Laser-based standoff detection of explosives: a critical review. Anal. Bioanal. Chem. 395(2), 259–274 (2009)

    Article  Google Scholar 

  • Wentworth, R.M., Neiss, J., Nelson, M.P., Treado, P.J.: Standoff Raman hyperspectral imaging detection of explosives. In: 2007 IEEE Antennas and Propagation Society International Symposium, pp. 4925–4928. IEEE (2007)

  • Yaoheng, X., Hesheng, F.: Modification of laser ranging equation. In: Proceedings of the 13th International Workshop on Laser Ranging, Washington, DC (2002)

  • Young, N.O.: Interferometer microphone. U.S. Patent 3,470,329, issued September 30, 1969

Download references

Acknowledgements

The authors are very grateful to the committee of Physics Department of the Faculty of Science at Cairo University for their support and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Elbashar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, H.S., Mokhtar, A.M., El-Sherif, A.F. et al. Modified range equation for exact modeling and design optimization of active laser remote sensing systems. Opt Quant Electron 53, 110 (2021). https://doi.org/10.1007/s11082-021-02759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02759-5

Keywords

Navigation