Skip to main content
Log in

Basic optical sensor for monitoring leukocyte properties in suspension

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The aim of this work is to propose and evaluate a suitable sensor to determine the leukocyte density in suspension. This sensor could be used to development of a home device that allows having relevant medical information on the leukocytes of an individual. To this end, we investigate a simple optical device to measure the average extinction coefficient of leukocytes in suspension. This is equivalent to the measurement of the so-called optical density of cell’s suspensions, extensively used in microbiology laboratories. The device utilizes a LED to illuminate a large volume of the sample and a simple lens to collect the coherently scattered light into a photodetector. The resulting transmittance signal has a high signal-to-noise ratio and follows Beer Lambert’s law, thus, allowing a straight-forward measure of leukocytes average optical properties in suspension or number-density. Compared to the standard way of measuring the optical density of cells suspensions, the proposed device is much simpler and robust. Measurements are insensitive to settling of cells during measurements. The proposed device could be the basis for designing a ‘point-of-care’ device to follow up progress of leukemia patients at home.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Apostolopoulos, G., Tsinopoulos, S., Vlachos, M., Dermatas, E., Patras, A.: Estimation of size and shape of the human red blood cell using light scattering images. J. Comput. Methods Sci. Eng. 9(1), 19–30 (2009)

    MATH  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, Hoboken (1998). https://doi.org/10.1002/9783527618156

    Book  Google Scholar 

  • Chapter 2: Methods of cell counting and assaying cell viability. In: Laboratory Techniques in Biochemistry and Molecular Biology, Vol 18, Number C, bll 7–17 (1988). https://doi.org/10.1016/S0075-7535(08)70627-2

  • Deng, Y., Chu, D.: Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-06215-x

    Article  Google Scholar 

  • García-valenzuela, A., Barrera, R.G., Sánchez-pérez, C., Méndez, E.R.: Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: theory versus experiment. Opt. Express 13(18), 6723–6737 (2005)

    Article  ADS  Google Scholar 

  • Green, R., Wachsmann-Hogiu, S.: Development, history, and future of automated cell counters. Clin. Lab. Med. (2015). https://doi.org/10.1016/j.cll.2014.11.003

    Article  Google Scholar 

  • Greer, J.P., Foerster, J., Lukens, J.N. (eds.): Wintrobe’s Clinical Hematology. Lippincott Williams & Wilkins, Philadelphia (2003)

    Google Scholar 

  • Ishimaru, A.K.Y.: Attenuation constant of a coherent field in a dense distribution of particles. J. Opt. Soc. Am. 72, 1317–1320 (1982)

    Article  ADS  Google Scholar 

  • Janssen, F.J.: A study of the absorption and scattering factors of light in whole blood. Med. Biol. Eng. 10, 231–232 (1972)

    Article  Google Scholar 

  • Kubitschek, H.E.: Electronic measurement of particle size. Research 13, 128–135 (1960)

    Google Scholar 

  • Li, X.C., Zhao, J.M., Wang, C.C., Liu, L.H.: Improved transmission method for measuring the optical extinction coefficient of micro/nano particle suspensions. Appl. Opt. 55(29), 8171–8179 (2016). https://doi.org/10.1364/AO.55.008171

    Article  ADS  Google Scholar 

  • Lucidi, M., Marsan, M., Pudda, F., Pirolo, M., Frangipani, E., Visca, P., Cincotti, G.: Geometrical-optics approach to measure the optical density of bacterial cultures using a LED-based photometer. Biomed. Opt. Express 10(11), 5600–5610 (2019). https://doi.org/10.1364/boe.10.005600

    Article  Google Scholar 

  • Meyers, A., Furtmann, C., Jose, J.: Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications. Enzym. Microb. Technol. 118, 1–5 (2018). https://doi.org/10.1016/j.enzmictec.2018.06.016

    Article  Google Scholar 

  • Morris, S.C.: An evaluation of optical density to estimate fungal spore concentrations in water suspensions. Phytopathology 68(8), 1240–1242 (1978). https://doi.org/10.1094/phyto-68-1240

    Article  Google Scholar 

  • Neikov, O.D., Lotsko, D.V. and Gopienko, V.G.: Powder characterization and testing. In: Handbook of Non-Ferrous Metal Powders, 2nd edn, pp. 3–62. Elsevier (2019)

  • Ortega-martinez, A., Boas, D.A., Ortega-martinez, A., Zimmermann, B., Cheng, X., Li, X., Ay, M.: Contribution of speckle noise in near-infrared spectroscopy measurements. J. Biomed. Opt. 24(10), 105003, 1–6 (2019). https://doi.org/10.1117/1.JBO.24.10.105003

    Article  Google Scholar 

  • Rumyantsev, S.L., Shur, M.S., Bilenko, Y., Kosterin, P.V., Salzberg, B.M.: Low frequency noise and long-term stability of noncoherent light sources. J. Appl. Phys. 96(2), 966–969 (2004). https://doi.org/10.1063/1.1763225

    Article  ADS  Google Scholar 

  • Sarrafzadeh, O., Dehnavi, A.M.: Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Advanced biomedical research. 4, 174 (2015). https://doi.org/10.4103/2277-9175.163998

    Article  Google Scholar 

  • Ubey, V.I.D., Ingh, G.Y.S., Ingh, V.E.S., Hmad, A.Z.A.: Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs. Appl. Opt. 55(10), 2521–2525 (2016)

    Article  ADS  Google Scholar 

  • Valenzeno, D.P., Trank, J.W.: Measurement of cell lysis by light scattering. Photochem. Photobiol. 42(3), 335–339 (1985)

    Article  Google Scholar 

  • van de Hulst, H.C.: Light Scattering by Small Particles. J. W. & Sons, Baltimore (1981)

    Google Scholar 

  • Van De Merwe, W.P., Huffman, D.R., Bronk, B.V.: Reproducibility and sensitivity of polarized light scattering for identifying bacterial suspensions. Appl. Opt. 28(23), 5052–5057 (1989). https://doi.org/10.1364/AO.28.005052

    Article  ADS  Google Scholar 

  • Victor Hoffbrand, A.: Hoffbrand’s Essential Haematology. Wiley (Red), Seventh (n.d.)

  • Yang, Y., Zhang, Z., Yang, X., Yeo, J.H., Jiang, L., Jiang, D.: Blood cell counting and classification by nonflowing laser light scattering method. J. Biomed. Opt. 9(5), 995–1001 (2004). https://doi.org/10.1117/1.1782572

    Article  ADS  Google Scholar 

  • Yurkin, V.P.: Optics of white blood cells: optical models, simulations, and experiments. In: Tuchin, V.V. (ed.) Advanced Optical Flow Cytometry: Methods and Disease Diagnoses. Wiley, Hoboken (2011). https://doi.org/10.1002/9783527634286.ch4

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN102218). AAB also acknowledges funding from Consejo Nacional de Ciencia y Tecnología (708764). We are grateful to Rafael Cerón Maldonado, Adrian de la Cruz Rosas and Jazmin G. Garduño-Hernández for their support in cell separation and assistance with the Neubauer chamber.

Funding

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN102218). AAB also acknowledges funding from Consejo Nacional de Ciencia y Tecnología (708,764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pérez-Pacheco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Pacheco, A., Álvarez-Chávez, N.E., Olarte-Carrillo, I. et al. Basic optical sensor for monitoring leukocyte properties in suspension. Opt Quant Electron 53, 61 (2021). https://doi.org/10.1007/s11082-020-02728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02728-4

Keywords

Navigation