Skip to main content
Log in

Realization of the quantum CNOT gate based on multiphoton process in multimode Cavity QED

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We propose a scheme for implementing the CNOT gate in which the photonic qubits encoded on the cavity modes and a four-level atom passes through the cavity. The location of the resonance is predicted from the use of effective three-level Hamiltonian. First, we have theoretically studied the interaction of multi-level atom with multi-mode fields in a cavity by using the shore’s method. Next we have numerically calculated the probability of the state of the interest as well as the fidelity of this scheme. We have also used the wave-function and the density matrix approaches to study theoretically and numerically the effects of decoherence in the implementation of the gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alqahtani, M.M., Everitt, M.S., Garraway, B.M.: Cavity QED Photons for Quantum Information Processing. (2014). arXiv:1407,0654v1 [quant-ph]

  • Alqahtani, Moteb M.: Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Inf. Process. 17(9), 211 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Arias, A., Helmrich, S., Schweiger, C., Ardizzone, L., Lochead, G., Whitlock, S.: Versatile: high-power 460nm laser system for Rydberg excitation of ultracold potassium. Opt. Express 25, 14829 (2017)

    Article  ADS  Google Scholar 

  • Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elemntary gates for quntum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

  • Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Clarendon, Oxford (2002)

    Book  MATH  Google Scholar 

  • Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Reversible State Transfer between Light and a Single Trapped Atom. Phys. Rev. Lett. 98(19), 193601 (2007)

    Article  ADS  Google Scholar 

  • Brattke, S., Varcoe, B.T.H., Walther, H.: Generation of photon number states on demand via cavity quantum electrodynamics. Phys. Rev. Lett. 86(16), 3534–3537 (2001)

    Article  ADS  Google Scholar 

  • Chang, J.T., Zubairy, M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77(1), 012329 (2008)

    Article  ADS  Google Scholar 

  • Chouikh, Abdelhaq, et al.: Implementation of universal two-and three-qubit quantum gates in a cavity QED. Opt. Quant. Electron. 48(10), 463 (2016)

    Article  Google Scholar 

  • Chuang, I., Yamamoto, Y.: Simple quantum computer. Phys. Rev. A 52, 3489 (1995)

    Article  ADS  Google Scholar 

  • Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    Article  ADS  Google Scholar 

  • Dalibard, J., Castin, Y., Mølmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)

    Article  ADS  Google Scholar 

  • DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51(2), 1015–1022 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  • DiVincenzo, D.P.: Quantum gates and circuits. Proc. Royal Soc. London. Ser. A: Math. Phys. Eng. Sci. 454(1969), 261–276 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Dum, R., Zoller, P., Ritsch, H.: Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A 45, 4879 (1992)

    Article  ADS  Google Scholar 

  • Everitt, M.S., Garraway, B.M.: Multiphoton resonances for all-optical quantum logic with multiple cavities. Phys. Rev. A 90(1), 012335 (2014)

    Article  ADS  Google Scholar 

  • Garraway, B.M., Sherman, B., Moya-Cessa, H., Knight, P.L., Kurizki, G.: Generation and detection of nonclassical field states by conditional measurements following two-photon resonant interactions. Phys. Rev. A 49(1), 535–547 (1994)

    Article  ADS  Google Scholar 

  • Gotzinger, S., Menezes, L de S., Mazzei, A., Kuhn, S., Sandoghdar, V., Benson, O.: Controlled Photon Transfer between Two Individual Nanoemitters via Shared High-Q Modes of a Microsphere Resonator. Nano Lett. 6(6), 11511154 (2006)

    Article  Google Scholar 

  • Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  • Gurudev Dutt, M.V., Cheng, Jun, Li, Bo, Xiaodong, Xu, Xiaoqin Li, P.R., Berman, D.G., Steel, Bracker, A. S.: Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett. 94(22), 227403 (2005)

    Article  ADS  Google Scholar 

  • Hofheinz, M., Weig, E.M., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Martinis, J.M., Cleland, A.N.: Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008)

    Article  ADS  Google Scholar 

  • Jonathan, A.J., Michele, M., Rasmus, H.H.: Implementation of a quantum Search algorithm on a quantum computer. Nature 393, 344–346 (1998)

    Article  ADS  Google Scholar 

  • Kok, P., Munro, W., Nemoto, K., Ralph, T., Dowling, J., Milburn, G.: Publisher’s note: linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  • Kollar, A.J., Papageorge, A.T., Vaidya, V.D., Guo, Y., Keeling, J., Lev, B.L.: Supermode-density-wave-polariton condensation with a Bose–Einstein Condensate in multimode cavity. Nat. Commun. 8(14386), 17 (2017)

    Google Scholar 

  • Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Ho, U.B., Del eglise, S., Osnaghi, S., Brune, M., Raimond, J. M., Haroche, S., Jacques, E., Bosland, P., Visentin, B.: Ultrahigh finesse Fabry-Pérot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    Article  ADS  Google Scholar 

  • Lambropoulos, P., Petrosyan, D.: Fundamentals of Quantum Optics and Quantum Information. Springer-Verlag, Berlin Heidelberg (2007)

    Google Scholar 

  • Lazarou, C., Garraway, B.M.: Adiabatic entanglement in two-atom cavity QED. Phys. Rev. A 77(2), 023818 (2008)

    Article  ADS  Google Scholar 

  • Lee, H., Chen, T., Li, J., Yang, K.Y., Jeon, S., Painter, O., Vahala, K.J.: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics 6, 369373 (2012)

    Article  Google Scholar 

  • Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: cohernece in context. Science 298(5597), 1372–1377 (2002)

    Article  ADS  Google Scholar 

  • Maller, K.M., Lichtman, M.T., Xia, T., Sun, Y., Piotrowicz, M.J., Carr, A.W., Isenhower, L., Saffman, M.: Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Phys. Rev. A 92, 022336 (2015)

    Article  ADS  Google Scholar 

  • McMahon, D.: Quantum computing explained. John Wiley & Sons (2007)

  • Meschede, D., Walther, H., Müller, G.: One-atom maser. Phys. Rev. Lett. 54(6), 551–554 (1985)

    Article  ADS  Google Scholar 

  • Mølmer, K., Castin, Y., Dalibard, J.: Monte Carlo wave-function method in quantum optics. JOSA B 10, 524 (1993)

    Article  ADS  Google Scholar 

  • Nielsen et, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Raimond, J.M., Facchi, P., Peaudecerf, B., Pascazio, S., Sayrin, C., Dotsenko, I., Gleyzes, S., Brune, M., Haroche, S.: Quantum Zeno dynamics of a field in a cavity. Phys. Rev. A 86(3), 032120 (2012)

    Article  ADS  Google Scholar 

  • Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)

    Article  ADS  Google Scholar 

  • Rempe, G., Schmidt-Kaler, F., Walther, H.: Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 64(23), 2783 (1990)

    Article  ADS  Google Scholar 

  • Said, T., Chouikh, A., Essammouni, K., Bennai, M.: Implementing N-Quantum Phase Gate via Circuit QED with qubit-qubit interaction. Mod. Phys. Lett. B 30(5), 1650050 (2016)

    Article  ADS  Google Scholar 

  • Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Shore, B.: Two-level behavior of coherent excitation of multilevel systems. Phys. Rev. A 24, 1413 (1981)

    Article  ADS  Google Scholar 

  • Specht, H.P., Nölleke, C., Reiserer, A., Uphoff, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473, 190193 (2011)

    Article  Google Scholar 

  • Vahala, K.J.: Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  • van Enk, S.J., Kimble, H.J., Mabuchi, H.: Quantum information processing in cavity-QED. Quantum Inf. Process. 3(1–5), 75–90 (2004)

    Article  MATH  Google Scholar 

  • Varcoe, B.T.H., Brattke, S., Weidinger, M., Walther, H.: Preparing pure photon number states of the radiation field. Nature 403, 743–746 (2000)

    Article  ADS  Google Scholar 

  • Varcoe, B.T., Brattke, S., Walther, H.: The creation and detection of arbitrary photon number states using cavity QED. New J. Phys. 6(1), 97 (2004).

    Article  ADS  Google Scholar 

  • Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W., & Kimble, H. J.: High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23(4), 247–249 (1998)

    Article  ADS  Google Scholar 

  • Walther, H., Varcoe, B. T., Englert, B. G., Becker, T.:. Cavity quantum electrodynamics. Rep. Prog. Phys., 69(5), 1325 (2006)

    Article  ADS  Google Scholar 

  • Zhang, X. L., Gill, A. T., Isenhower, L., Walker, T. G., Saffman, M.: Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography. Phys. Rev. A. 85(4), 042310 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bennai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammani, M., Chouikh, A., Said, T. et al. Realization of the quantum CNOT gate based on multiphoton process in multimode Cavity QED. Opt Quant Electron 53, 89 (2021). https://doi.org/10.1007/s11082-020-02685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02685-y

Keywords

Navigation