Skip to main content
Log in

Quantum phase gate based on multiphoton process in multimode cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme for implementing a two-qubit quantum phase gate in which the photonic qubits encoded on the cavity modes and a three-level V-type atom passes through the cavity. The location of the resonance is predicted from the use of the theory of multiphoton resonance. Further, we investigate the influence of variations in parameters such as the coupling strengths and detunings on the gate fidelity. We also use the wave-function and the density matrix approaches to analyze theoretically and numerically the effects of decoherence in the implementation of the gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  4. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

  5. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51(2), 1015–1022 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    Article  ADS  Google Scholar 

  7. Jonathan, A.J., Michele, M., Rasmus, H.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)

    Article  ADS  Google Scholar 

  8. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73(3), 565–582 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298(5597), 1372–1377 (2002)

    Article  ADS  Google Scholar 

  10. van Enk, S.J., Kimble, H.J., Mabuchi, H.: Quantum information processing in cavity-QED. Quantum Inf. Process. 3(1–5), 75–90 (2004)

    Article  MATH  Google Scholar 

  11. Haroche, S., Raimond, J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. OUP, Oxford (2013)

    MATH  Google Scholar 

  12. Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity qed model. Phys. Rev. Lett. 75(21), 3788–3791 (1995)

    Article  ADS  Google Scholar 

  13. Zubairy, M.S., Kim, M., Scully, M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A 68(3), 033820 (2003)

    Article  ADS  Google Scholar 

  14. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83(24), 5166–5169 (1999)

    Article  ADS  Google Scholar 

  15. Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016)

    Article  ADS  Google Scholar 

  16. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87(4), 1379–1418 (2015)

    Article  ADS  Google Scholar 

  17. Everitt, M.S., Garraway, B.M.: Multiphoton resonances for all-optical quantum logic with multiple cavities. Phys. Rev. A 90(1), 012335 (2014)

    Article  ADS  Google Scholar 

  18. Shore, B.W.: Two-level behavior of coherent excitation of multilevel systems. Phys. Rev. A 24(3), 1413–1418 (1981)

    Article  ADS  Google Scholar 

  19. Alqahtani, M.M., Everitt, M.S., Garraway, B.M.: Cavity QED photons for quantum information processing. arXiv:1407.0654v1 [quant-ph]

  20. Meschede, D., Walther, H., Müller, G.: One-atom maser. Phys. Rev. Lett. 54(6), 551–554 (1985)

    Article  ADS  Google Scholar 

  21. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Clarendon, Oxford (2002)

    Book  MATH  Google Scholar 

  23. Dalibard, J., Castin, Y., Mølmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)

    Article  ADS  Google Scholar 

  24. Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Hoff, U.B., Deléglise, S., Osnaghi, S., Brune, M., Raimond, J.M., Haroche, S., Jacques, E., Bosland, P., Visentin, B.: Ultrahigh finesse Fabry–Pérot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    Article  ADS  Google Scholar 

  25. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)

    Article  ADS  Google Scholar 

  26. Bergquist, J.C., Hulet, R.G., Itano, W.M., Wineland, D.J.: Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57(14), 1699–1702 (1986)

    Article  ADS  Google Scholar 

  27. Nagourney, W., Sandberg, J., Dehmelt, H.: Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56(26), 2797–2799 (1986)

    Article  ADS  Google Scholar 

  28. Cha, E.H., Jeong, T., Noh, H.: Two-color polarization spectroscopy in \(V\)-type configuration in rubidium. Opt. Commun. 326, 175–179 (2014)

    Article  ADS  Google Scholar 

  29. Vahala, K.J.: Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  30. Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  Google Scholar 

  31. McKeever, J., Buck, J.R., Boozer, A.D., Kuzmich, A., Nägerl, H.-C., Stamper-Kurn, D.M., Kimble, H.J.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90(13), 133602 (2003)

    Article  ADS  Google Scholar 

  32. Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325 (2006)

    Article  ADS  Google Scholar 

  33. Kollár, A.J., Papageorge, A.T., Vaidya, V.D., Guo, Y., Keeling, J., Lev, B.L.: Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 8(14386), 17 (2017)

    Google Scholar 

  34. Sundaresan, N.M., Liu, Y., Sadri, D., Szőcs, L.J., Underwood, D.L., Malekakhlagh, M., Türeci, H.E., Houck, A.A.: Beyond strong coupling in a multimode cavity. Phys. Rev. X 5(2), 021035 (2015)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank F. Maiz for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moteb M. Alqahtani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, M.M. Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Inf Process 17, 211 (2018). https://doi.org/10.1007/s11128-018-1979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1979-6

Keywords

Navigation