Skip to main content
Log in

Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The promising fields of gallium oxide application are the production of hybrid cars, electrical equipment of high-power, ultraviolet radiation sensors and uninterruptible power supplies. However, the main factor hindering its massive commercial use is the lack of synthesis technologies, that should be cheap, reproducible, and scalable. In this work we develop a novel plasma-chemical method of Ga2O3 synthesis. The high-purity elemental gallium was used as the precursor, which was delivered by argon flow to the reaction zone, where the interaction with iodide pentoxide took place. RF (40.68 MHz) non-equilibrium plasma discharge at low pressure (0.1 Torr) was employed for the initiation of interactions between precursors. Optical Emission Spectroscopy in tandem with quantum-chemical calculations allowed us to find out the reactive species formed in the plasma discharge. The properties of the solid phase obtained were studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Areán, C.O., Bellan, A.L., Mentruit, M.P., Delgado, M.R., Palomino, G.T.: Preparation and characterization of mesoporous γ-Ga2O3. Microporous Mesoporous Mater. 40, 35–42 (2000)

    Article  Google Scholar 

  • Binions, R., Carmalt, C.J., Parkin, I.P., Pratt, K.F.E., Shaw, G.A.: Gallium oxide thin films from the atmospheric pressure chemical vapor deposition reaction of gallium trichloride and methanol. Chem. Mater. 16(12), 2489–2493 (2004)

    Article  Google Scholar 

  • Böhm, J.: Über Galliumoxyd und-hydroxyd. Angew. Chem. 53, 131 (1940)

    Article  Google Scholar 

  • Chase, M.W.: NIST-JANAF thermochemical tables for the iodine oxides. J. Phys. Chem. Ref. Data 25, 1297–1340 (1996)

    Article  ADS  Google Scholar 

  • Cheng, Y., Liang, H., Shen, R., Xia, X., Wang, B., Liu, Y., Song, S., Liu, Y., Zhang, Z., Du, G.: Band gap broadening and photoluminescence properties investigation in Ga2O3 polycrystal. J. Mater. Sci. Mater. Electron. 24, 2750–2754 (2013)

    Article  Google Scholar 

  • Delgado, M.R., Areán, D.O.: Surface chemistry and pore structure of β-Ga2O3. Mater. Lett. 57, 2292–2297 (2003)

    Article  Google Scholar 

  • Fleischer, M., Meixner, H.: Gallium oxide thin films: a new material for high-temperature oxygen sensors. Sens. Actuators B: Chem. 4(3–4), 437–441 (1991)

    Article  Google Scholar 

  • Galazka, Z.: β-Ga2O3 for wide-bandgap electronics and optoelectronic. Semicond. Sci. Technol. (2018). https://doi.org/10.1088/1361-6641/aadf78

    Article  Google Scholar 

  • Galvez, O., Gomez Martin, J.C., Gomez, P.C., Saiz-Lopez, A., Pacios, L.F.: A theoretical study on the formation of iodine oxide aggregates and monohydrates. Phys. Chem. Chem. Phys. 15, 15575–15583 (2013)

    Article  Google Scholar 

  • Gomez Martin, J.C., Galvez, O., Baeza-Romero, M.T., Ingham, T., Plane, J.M.C., Blitz, M.A.: On the mechanism of iodine oxide particle formation. Phys. Chem. Chem. Phys. 15, 15612–15622 (2013)

    Article  Google Scholar 

  • Granqvist, C.G.: Electrochromic materials: out of a niche. Nat. Mater. 5(2), 89–90 (2006)

    Article  ADS  Google Scholar 

  • He, H., Orlando, R., Blanco, M.A., Pandey, R., Amzallag, E., Baraille, I., Rérat, M.: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123-1–195123-8 (2006)

    ADS  Google Scholar 

  • Kaltsoyannis, N., Plane, J.M.C.: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere. Phys. Chem. Chem. Phys. 10, 1723–1733 (2008)

    Article  Google Scholar 

  • Kukushkin, S.A., Osipov, A.V., Osipova, E.V., Feoktistov, N.A., Nikolaev, V.I., Pechnikov, A.I.: Epitaxial gallium oxide on a SiC/Si substrate. Phys. Solid State 58(9), 1876–1881 (2016)

    Article  ADS  Google Scholar 

  • Liu, Z., Li, P.-G., Yusong, Z., Tang, W.-H.: Review of gallium oxide-based field-effect transistors and Schottky barrier diodes. Chin. Phys. B 28(1), 017105 (2019). https://doi.org/10.1088/1674-1056/28/1/017105

    Article  ADS  Google Scholar 

  • Logunov, A., Mochalov, L., Gogova, D., Vorotyntsev, V.: Synthesis of gallium oxide from the elements at rf plasma discharge in the argon-oxygen mixture. Int. Conf. Transp. Opt. Netw. (2019). https://doi.org/10.1109/icton.2019.8840331

    Article  Google Scholar 

  • Marie, P., Portier, X., Cardin, J.: Growth and characterization of gallium oxide thin films by radiofrequency magnetron sputtering. Physica Status Solid A 205(8), 1943–1946 (2008)

    Article  ADS  Google Scholar 

  • Marwoto, P., Sugianto, S., Wibowo, E.: Growth of europium-doped gallium oxide (Ga2O3:Eu) thin films deposited by homemade DC magnetron sputtering. J. Theor. Appl. Phys. 6, 17 (2012). https://doi.org/10.1186/2251-7235-6-17

    Article  ADS  Google Scholar 

  • McFiggans, G., Plane, J.M.C., Allan, B.J., Carpenter, L.J., Coe, H., O’Dowd, C.: A modeling study of iodine chemistry in the marine boundary layer. J. Geophys. Res. Atmos. 105, 14371–14385 (2000)

    Article  ADS  Google Scholar 

  • Milosavljevic, V., Ellingboe, A.R., Daniels, S.: Influence of plasma chemistry on oxygen triplets. Eur. Phys. J. D 64, 437–445 (2011)

    Article  ADS  Google Scholar 

  • Minami, T.: Oxide thin-film electroluminescent devices and materials. Solid State Electron. 47, 2237–2243 (2003). https://doi.org/10.1016/S0038-1101(03)00204-1

    Article  ADS  Google Scholar 

  • Mochalov, L., Logunov, A., Vorotyntsev, A., Vorotyntsev, V., Mashin, A.: Purification of tellurium through thermal decomposition of plasma prepared tellurium hydride. Sep. Purif. Technol. 204, 276–280 (2018). https://doi.org/10.1016/j.seppur.2018.05.009

    Article  Google Scholar 

  • Mochalov, L., Logunov, A., Vorotyntsev, V.: Structural and optical properties of As-Se-Te chalcogenide films prepared by plasma-enhanced chemical vapor deposition. Mater. Res. Exp. 6(5), 056407 (2019a). https://doi.org/10.1088/2053-1591/ab014d

    Article  Google Scholar 

  • Mochalov, L., Logunov, A., Sazanova, T., Vorotyntsev, V.: New generation of materials for the near-mid IR sensors based on lead chalcogenides. Int. Conf. Transp. Opt. Netw. 2019, 8839997 (2019b). https://doi.org/10.1109/ICTON.2019.883999

    Article  Google Scholar 

  • Mochalov, L., Logunov, A., Kitnis, A., Vorotyntsev, V.: Plasma-chemistry of arsenic selenide films: relationship between film properties and plasma power. Plasma Chem. Plasma Process. 40(1), 407–421 (2020a). https://doi.org/10.1007/s11090-019-10035-4

    Article  Google Scholar 

  • Mochalov, L., Logunov, A., Markin, A., Kitnis, A., Vorotyntsev, V.: Characteristics of the Te-based chalcogenide films dependently on the parameters of the PECVD process. Opt. Quant. Electron. 52(4), 197 (2020b). https://doi.org/10.1007/s11082-020-02312-w

    Article  Google Scholar 

  • Mochalov, L., Logunov, A., Kitnis, A., Prokhorov, I., Kovalev, A., Yunin, P., Gogova, D., Vorotyntsev, V.: Plasma-chemical purification of iodine. Sep. Purif. Technol. 238, 116446 (2020c). https://doi.org/10.1016/j.seppur.2019.116446

    Article  Google Scholar 

  • Mochalov, L., Logunov, A., Sazanova, T., Gogova, D., Zelentsov, S., Yunin, P., Prokhorov, I., Malyshev, V., Vorotyntsev, V.: Gallium oxide films prepared by oxidation of gallium in oxygen-hydrogen plasma. Int. Conf. Transp. Opt. Netw. 2020, 9203286 (2020d). https://doi.org/10.1109/ICTON51198.2020.9203286

    Article  Google Scholar 

  • Mochalov, L., Logunov, A., Sazanova, T., Kulikov, A., Rafailov, E., Zelentsov, S., Vorotyntsev, V.: Zinc oxide nanostructured materials prepared by PECVD as a platform for biosensors. In: 2020 22nd international conference on transparent optical networks (ICTON), Bari, Italy, pp. 1–4 (2020). https://doi.org/10.1109/ICTON51198.2020.9203466

  • Mochalov, L., Dorosz, D., Kochanowicz, M., Logunov, A., Letnianchik, A., Starostin, N., Zelentsov, S., Boreman, G., Vorotyntsev, V.: Optical emission spectroscopy of lead sulfide films plasma deposition. Spectrochim. Acta—Part A: Mol. Biomol. Spectrosc. 241, 118629 (2020f). https://doi.org/10.1016/j.saa.2020.118629

    Article  Google Scholar 

  • Murakami, H., Nomura, K., Goto, K., Sasaki, K., Kawara, K., Thieu, Q.T., Togashi, R., Kumagai, Y., Higashiwaki, M., Kuramata, A.: Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl. Phys. Exp. 8, 015503 (2015). https://doi.org/10.7567/apex.8.015503

    Article  ADS  Google Scholar 

  • Ortiza, A., Alonso, J.C., Andrade, E., Urbiola, C.: Structural and optical characteristics of gallium oxide thin films deposited by ultrasonic spray pyrolysis. J. Electrochem. Soc. 148(2), F26–F29 (2001)

    Article  Google Scholar 

  • Pearton, S.J., Yang, J., Cary, P.H., Ren, F., Kim, J., Tadjer, M.J., Mastro, M.A.: A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018). https://doi.org/10.1063/1.5006941

    Article  ADS  Google Scholar 

  • Petukhov, A.N., Shablykin, D.N., Vorotyntsev, A.V., Vorotyntsev, I.V., Vorotyntsev, V.M.: Effects of association with impurities in ammonia purification. Fluid Phase Equilib. 406, 163–167 (2015). https://doi.org/10.1016/j.fluid.2015.07.034

    Article  Google Scholar 

  • Saunders, R.W., Plane, J.M.C.: Formation pathways and composition of iodine oxide ultra-fine particles. Environ. Chem. 2, 299–303 (2005)

    Article  Google Scholar 

  • Stepanov, S.I., Nikolaev, V.I., Bougrov, V.E., Romanov, A.E.: Gallium oxide: properties and applications: a review. Rev. Adv. Mater. 44, 63–86 (2016)

    Google Scholar 

  • Tassev, V., Bliss, D., Suscavage, M., Paduano, Q.S., Wang, S.-Q., Bouthillette, L.: Iodine vapor phase growth of GaN: dependence of epitaxial growth rate on process parameters. J. Cryst. Growth 235(1–4), 140–148 (2002)

    Article  ADS  Google Scholar 

  • Vorotyntsev, V.M., Malyshev, V.M., Mochalov, L.A., Petukhov, A.N., Salnikova, M.E.: The capture of nanosized particles by the directional crystallization of sulfur. Sep. Purif. Technol. 199, 214–221 (2018a). https://doi.org/10.1016/j.seppur.2018.01.065

    Article  Google Scholar 

  • Vorotyntsev, A.V., Petukhov, A.N., Makarov, D.A., Sazanova, T.S., Razov, E.N., Nyuchev, A.V., Mochalov, L.A., Markov, A.N., Kulikov, A.D., Vorotyntsev, V.M.: Supported ionic liquid-like phases based on CMS/DVB with different NR3 cations as catalysts for the chlorosilanes disproportionation. Appl. Catal. B 239, 102–113 (2018b). https://doi.org/10.1016/j.apcatb.2018.07.069

    Article  Google Scholar 

  • Zatsarinny, O., Bartschat, K., Garcia, G., Blanco, F., Hargreaves, L.R., Jones, D.B., Murrie, R., Brunton, J.R., Brunger, M.J., Hoshino, M., Buckman, S.J.: Electron-collision cross sections for iodine. Phys. Rev. A 83, 042702 (2011)

    Article  ADS  Google Scholar 

  • Zatsepin, D.A., Boukhvalov, D.W., Zatsepin, A.F., Kuznetsova, Y.A., Gogova, D.S., Shur, V.Y., Esin, A.A.: Atomic structure, electronic states, and optical properties of epitaxially grown β-Ga2O3 layers. Superlatt. Microstruct. 120, 90–100 (2018)

    Article  ADS  Google Scholar 

  • Zinkevich, M., Morales, F.M., Nitsche, H., Ahrens, M., Rühle, M., Aldinger, F., Metallk, Z.: Microstructural and thermodynamic study of γ-Ga2O3. Zeitschrift für Metallkunde 95, 756–762 (2004). https://doi.org/10.3139/146.018018

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was supported by Russian Science Foundation, Grant № 19-19-00510 “Development of a Novel Plasma Enhanced Vapor Phase Method for Deposition of Gallium Oxide Films for Applications in High-power Electronics and in UV Schottky Diodes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Mochalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, L., Logunov, A., Gogova, D. et al. Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma. Opt Quant Electron 52, 510 (2020). https://doi.org/10.1007/s11082-020-02625-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02625-w

Keywords

Navigation