Skip to main content
Log in

QAM–OFDM transmission in underwater wireless optical communication system with limited resolution DAC

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Underwater wireless optical communication (UWOC) can realize high speed, low delay and flexible information transmission. We experimentally demonstrate a 3-m UWOC system using blue laser diode and avalanche photodiode with quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM) transmission. We achieve net bit rates of 6.23 Gb/s at a bit error rate (BER) of 1.55 × 10−3, by using 128-QAM OFDM signals. High-order QAM signals require higher bit resolution of digital-to-analog converter (DAC). Therefore, the effect of quantization noise on transmission performance is further investigated. In order to meet the requirement that the BER is lower than 3.8 × 10−3, the bit resolution of DAC is required to be at least 5, 6 and 7 bit for 32-QAM, 64-QAM and 128-QAM signals, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Halafi, A.: Real-time and ultra-high definition video transmission in underwater wireless optical networks. Ph.D. dissertation, KAUST (2018)

  • Al-Halafi, A., Shihada, B.: UHD video transmission over bidirectional underwater wireless optical communication. IEEE Photonics J. 10(2), 1–14 (2018)

    Article  Google Scholar 

  • Al-Halafi, A., et al.: Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode. IEEE/OSA J. Opt. Commun. Netw. 9(10), 826–832 (2017)

    Article  Google Scholar 

  • Bai, J., et al.: PAPR reduction for IM/DD-OFDM signals in underwater wireless optical communication system. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE (2018)

  • Chen, M., et al.: Experimental demonstration of real-time high-level QAM-encoded direct-detection optical OFDM systems. J. Lightw. Technol. 33(22), 4632–4639 (2015)

    Article  ADS  Google Scholar 

  • Chi, Y.-C., et al.: 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM–OFDM. Opt. Express 23(10), 13051–13059 (2015)

    Article  ADS  Google Scholar 

  • Cochenour, Brandon, Dunn, Kaitlin, Laux, Alan, Mullen, Linda: Experimental measurements of the magnitude and phase response of high-frequency modulated light underwater. Appl. Opt. 56, 4019–4024 (2017)

    Article  ADS  Google Scholar 

  • Cox, William, Muth, John: Simulating channel losses in an underwater optical communication system. J. Opt. Soc. Am. A 31, 920–934 (2014)

    Article  ADS  Google Scholar 

  • Jing, Xu, Kong, Meiwei, et al.: OFDM-based broadband underwater wireless optical communication system using a compact blue LED. Opt. Commun. 369, 100–105 (2016)

    Article  ADS  Google Scholar 

  • Karahroudi, M.K., et al.: Performance evaluation of perfect transmission of optical vortices in an underwater optical communication system. Appl. Opt. 57(30), 9148–9154 (2018)

    Article  ADS  Google Scholar 

  • Lu, I.-C., and Liu, Y.-L.: 205 Mb/s LED-based underwater optical communication employing OFDM modulation. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). IEEE (2018)

  • Nakamura, K., et al.: Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel. Opt. Express 23(2), 1558–1566 (2015)

    Article  ADS  Google Scholar 

  • Oubei, H.M., Li, C., Park, K.H., Ng, T.K., Alouini, M.S., Ooi, B.S.: 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Express 23(16), 20743–20748 (2015a)

    Article  ADS  Google Scholar 

  • Oubei, H.M., et al.: 4.8 Gbit/s 16-QAM–OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 23(18), 23302–23309 (2015b)

    Article  ADS  Google Scholar 

  • Retamal, J.R., et al.: 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. Opt. Express 23(26), 33656–33666 (2015)

    Article  ADS  Google Scholar 

  • Sahu, S.K., Shanmugam, P.: A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system. Opt. Commun. 408, 3–14 (2018)

    Article  ADS  Google Scholar 

  • Shen, C., Guo, Y., Oubei, H.M., et al.: 20-meter underwater wireless optical communication link with 1.5 Gb/s data rate. Opt. Express 24(22), 275526-5509 (2016)

    Article  Google Scholar 

  • Shen, J., Wang, J., Chen, X., Zhang, C., Kong, M., Tong, Z., Xu, J.: Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter. Opt. Express 26(18), 23565–23571 (2018)

    Article  ADS  Google Scholar 

  • Sun, X., et al.: 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Opt, Express 26(10), 12870–12877 (2018)

    Article  ADS  Google Scholar 

  • Tian, P., Liu, X., Yi, S., et al.: High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 25(2), 1193–1202 (2017)

    Article  ADS  Google Scholar 

  • Watson, S., Tan, M., Najda, S.P., Perlin, P., Leszczynski, M., Targowski, G., Kelly, A.E.: Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 38(19), 3792–3794 (2013)

    Article  ADS  Google Scholar 

  • Willner, A.E., et al.: Underwater optical communications using orbital angular momentum-based spatial division multiplexing. Opt. Commun. 408, 21–25 (2018)

    Article  ADS  Google Scholar 

  • Xu, J., et al.: Underwater laser communication using an OFDM-modulated 520-nm laser diode. IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016a)

    Article  ADS  Google Scholar 

  • Xu, J., Song, Y., Lin, XYuA, Kong, M., Han, J.: Underwater wireless transmission of high-speed QAM–OFDM signals using a compact red-light laser. Opt. Express 24(8), 8097–8109 (2016b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by University Natural Science Research Project of Anhui Province (Grant No.: KJ2019A0616) and the key projects in natural science of West Anhui University (Grant No.: WXZR201719) and by the quality engineering project in natural science of West Anhui University (Grant No.: wxxy2017122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, X. & Fu, M. QAM–OFDM transmission in underwater wireless optical communication system with limited resolution DAC. Opt Quant Electron 52, 419 (2020). https://doi.org/10.1007/s11082-020-02529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02529-9

Keywords

Navigation