Skip to main content
Log in

Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper describes a simple H-typed terahertz metamaterial structure consisting of three metal rectangular strips. The structure can convert the Fano effect to the electromagnetically induced transparency (we use its abbreviation EIT instead) effect in the frequency range of 0.1–1.5 THz. The results show that the Fano effect occurs when the symmetry of the H-typed structure is slightly broken, and a narrow and sharp Fano dip occurs at a frequency of 1.05 THz, and the Q value of the Fano dip can reach 43. When the structural asymmetry is increased by moving the metal rectangular strip in the middle, the structure realizes a transition from the Fano effect to the EIT effect, and a transparent transmission with a line width of 0.383 THz occurs at a frequency of 1.0 THz, and the transmittance is as high as 93.66%. In order to illustrate the mechanism of the Fano effect and the EIT effect in this structure, we present the electric fields at several key resonant frequencies and discuss and analyze them. In addition, we also study the effects of structural parameters on the Fano effect and the EIT effect, and make appropriate discussions and summaries. This metamaterial structure enables the functional conversion from Fano to EIT, and the functional conversion device designed by this has potential application value in terahertz sensing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anh, P.T.T., Peter, H.B.: Terahertz modulator based on vertically coupled Fano metamaterial. IEEE Trans. Terahertz Sci. Technol. 8, 502–508 (2018)

    Article  Google Scholar 

  • Bera, A., Roussey, M., Kuittinen, M., Honkanen, S.: Slow-light enhanced electro-optic modulation with an on-chip silicon-hybrid Fano system. Opt. Lett. 41, 2233–2236 (2016)

    Article  ADS  Google Scholar 

  • Boardman, A.D., Rapoport, Y.G., Thomas, R.C.M.: Nonlinear and magnetooptic light control in photonic metamaterial waveguides and superfocusing. Transp. Opt. Netw. ICTON (2012). https://doi.org/10.1109/ICTON.2012.6254374

    Article  Google Scholar 

  • Chan, H.C., Sun, S.L., Guo, G.Y.: Near-infrared left-handed metamaterials made of arrays of upright split-ring pairs. J. Phys. D Appl. Phys. 51, 265103 (2018)

    Article  ADS  Google Scholar 

  • Deng, X.Q., Zhang, Z.C., Cao, J., Zhang, Z.K., Tian, Y.B.: Electromagnetic scattering analysis of normal chiral, metamaterials chiral and chiral nihility materials. Electromagnetics 39, 227–240 (2019)

    Article  Google Scholar 

  • Fan, Y., Qiao, T., Zhang, F., Fu, Q., Dong, J., Kong, B., Li, H.: An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci. Rep. 7, 40441 (2016)

    Article  ADS  Google Scholar 

  • He, X.J., Yao, Y., Yang, X.Y., Lun, G.J.: Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications. Opt. Commun. 410, 206–210 (2018)

    Article  ADS  Google Scholar 

  • Hu, S., Yang, H.L., Chen, J., Huang, X.J.: Study of dual-spectral electromagnetically induced transparency in bright-dark mode coupling metamaterials. Int. Symp. Antennas IEEE (2017). https://doi.org/10.1109/ISAPE.2016.7834034

    Article  Google Scholar 

  • Huang, W.X., Guo, J.J., Wang, M.S., Zhao, G.R.: Sensor based on Fano resonances of plane metamaterial with narrow slits. Phys. Lett. A 381, 909–912 (2017)

    Article  ADS  Google Scholar 

  • Hui, A.T.L., Yi, X.K., Song, S.J., Nguyen, L.: Reconfigurable optical switch based on thermally controlled EIT-like effect. Int. Conf. Photonics ICP IEEE (2016). https://doi.org/10.1109/ICP.2016.7510004

    Article  Google Scholar 

  • Islam, S.S., Hasan, M.M., Faruque, M.R.I.: A new metamaterial-based wideband rectangular invisibility cloak. Appl. Phys. A 124, 160 (2018)

    Article  ADS  Google Scholar 

  • Karmakar, S., Varshney, R.D.K., Chowdhury, D.R.R.: Theoretical investigation of active modulation and enhancement of Fano resonance in THz metamaterials. OSA Contin. 2, 531–539 (2019)

    Article  Google Scholar 

  • Kim, T.T., Kim, H.D., Zhao, R.K., Oh, S.S., Ha, T., Chung, D.S., Lee, Y.H., Min, B., Zhang, S.: Electrically tunable slow light using graphene metamaterials. ACS Photonics 5, 1800–1807 (2018)

    Article  Google Scholar 

  • Lee, Y.U., Choi, E., Kim, E.S., Woo, J.H., Kang, B., Kim, J.H., Hong, T.Y., Kim, J.H., Wu, J.W.: Polarization control of Fano-resonance in metamaterial. Conf. Lasers Electro-Optics CLEO (2012). https://doi.org/10.1364/cleo_at.2012.jth2a.78

    Article  Google Scholar 

  • Li, W.Y., Su, Y., Zhai, X., Shang, X.J., Xia, S.X., Wang, L.L.: High-Q multiple fano resonances sensor in single dark mode metamaterial waveguide structure. IEEE Photonics Technol. Lett. 30, 2068–2071 (2018)

    Article  ADS  Google Scholar 

  • Liang, W.Y., Li, Z., Wang, Y., Chen, W.H., Li, Z.Y.: All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials. Photonics Res. 7, 318–324 (2019)

    Article  Google Scholar 

  • Lim, W.X., Han, S., Gupta, M., MacDonald, K.F., Singh, R.: Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions. Appl. Phys. Lett. 111, 061104 (2017)

    Article  ADS  Google Scholar 

  • Ling, F., Zhong, Z.Q., Huang, R.S., Zhang, B.: A broadband tunable terahertz negative refractive index metamaterial. Sci. Rep. 8, 9843 (2018)

    Article  ADS  Google Scholar 

  • Liu, Z.Y., Qi, L.M., Shah, S., Sun, D.D., Li, B.: Design of broad stopband filters based on multilayer electromagnetically induced transparency metamaterial structures. Materials (2019). https://doi.org/10.3390/ma12060841

    Article  Google Scholar 

  • Lu, Y.Q., Xu, J., Xu, M., Xu, J., Wang, J., Zheng, J.J.: High sensitivity plasmonic metal-dielectric-metal device with two side-coupled fano cavities. Photonic Sens. 9, 205–212 (2019)

    Article  ADS  Google Scholar 

  • Nicolaou, Z.G., Motter, A.E.: Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2016)

    Article  ADS  Google Scholar 

  • Rahmani, A., Rostami, A., Saghai, H.R., Farshi, M.K.M.: Ultrafast GaN/AlN modulator based on quantum dot for terabit all-optical communication. Optik 125, 3844–3851 (2014)

    Article  ADS  Google Scholar 

  • Ray, S.K., Chandel, S., Singh, A.K., Kumar, A., Mandal, A., Misra, S., Mitra, P., Ghosh, N.: Polarization-tailored Fano interference in plasmonic crystals: a Mueller matrix model of anisotropic Fano resonance. ACS Nano 11, 1641–1648 (2017)

    Article  Google Scholar 

  • Rosenblatt, G., Orenstein, M.: Perfect lensing with lossy metamaterials: a blueprint for realization. Photonics Conf. (2017). https://doi.org/10.1109/IPCon.2016.7831165

    Article  Google Scholar 

  • Shen, Z.Y., Xiang, T.Y., Wu, J.Y., Yang, Z.T., Yang, H.L.: Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial. J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.12.069

    Article  Google Scholar 

  • Shuai, Y.C., Zhao, D.Y., Stambaugh, C., Lawall, J., Zhou, W.D.: Stacked double-layer nanomembrane Fano modulators. Proc. SPIE 9752, 975205 (2016)

    Article  Google Scholar 

  • Sreekanth, K.V., Mahalakshmi, P., Han, S., Rajan, M.S.M., Choudhury, P.K., Singh, R.: Brewster mode-enhanced sensing with hyperbolic metamaterial. Adv. Opt. Mater. (2019). https://doi.org/10.1002/adom.201900680

    Article  Google Scholar 

  • Wang, B.X.: Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J. Sel. Top. Quantum Electron. 23, 4700107 (2017)

    Google Scholar 

  • Wang, G.X., Lu, H., Liu, X.M.: Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Opt. Express 20, 20902–20907 (2012)

    Article  ADS  Google Scholar 

  • Wang, B.X., Wang, G.Z., Wang, L.L., Zhai, X.: Design of a five-band terahertz absorber based on three nested split-ring resonators. IEEE Photonics Technol. Lett. 28, 307–310 (2016a)

    Article  ADS  Google Scholar 

  • Wang, B.X., Wang, G.Z., Wang, L.L.: Design of novel dual-band terahertz metamaterial absorber. Plasmonics 11, 523–530 (2016b)

    Article  Google Scholar 

  • Wang, B.X., Wang, G.Z., Sang, T.: Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J. Phys. D Appl. Phys. 49, 165307 (2017a)

    Article  ADS  Google Scholar 

  • Wang, K., Fan, W.H., Chen, X., Song, C., Jiang, X.Q.: Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale. Opt. Commun. 439, 61–65 (2017b)

    Article  ADS  Google Scholar 

  • Wang, J., Tian, H., Wang, Y., Li, X.Y., Cao, Y.J., Li, L., Liu, J.L., Zhou, Z.X.: Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial. Opt. Express 26, 5769–5776 (2018a)

    Article  ADS  Google Scholar 

  • Wang, P.Y., Jin, T., Meng, F.Y., Lyu, Y.L., Erni, D., Wu, Q., Zhu, L.: Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor. Opt. Express 26, 12318–12329 (2018b)

    Article  ADS  Google Scholar 

  • Wang, B.X., Tang, C., Niu, Q., He, Y., Chen, T.: Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers. Nanoscale Res. Lett. 14, 64 (2019)

    Article  ADS  Google Scholar 

  • Wang, B.X., He, Y., Lou, P., Xing, W.: Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2, 763–769 (2020)

    Article  ADS  Google Scholar 

  • Wu, D., Liu, Y., Yu, L., Yu, Z., Chen, L., Li, R., Ma, R., Liu, C., Zhang, J., Ye, H.: Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci. Rep. 7, 45210 (2017)

    Article  ADS  Google Scholar 

  • Xiao, S.Y., Liu, T.T., Jiang, C.B.Z., Jiang, X.Y., Jiang, L., Chen, X.: Tailoring slow light with a metal-graphene hybrid metasurface in the terahertz regime. J. Opt. Soc. Am. B 36, E48–E54 (2019)

    Article  Google Scholar 

  • Xin, H.P., Liu, F., Ren, G.J., Zhao, H.L., Yao, J.Q.: A liquid crystals modulated optical tunable filter based on Fano resonance of Au nanorod trimer. Opt. Commun. 389, 92–96 (2017)

    Article  ADS  Google Scholar 

  • Yahiaoui, R., Burrow, J.A., Mekonen, S.M., Sarangan, A., Mathews, J., Agha, I., Searles, T.A.: Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling. Phys. Rev. (2017). https://doi.org/10.1103/PhysRevB.97.155403

    Article  Google Scholar 

  • Yahiaoui, R., Manjappa, M., Srivastava, Y.K., Singh, R.: Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices. Appl. Phys. Lett. 111, 021101 (2017)

    Article  ADS  Google Scholar 

  • Zhu, W.M., Teng, J.H., Zhang, X.H., Tsai, J.M., Wu, Q.Y., Tanoto, H., Guo, H.C., Bourouina, T., Lo, G.Q., Kwong, D.L., Liu, A.Q.: Polarization selective tunable filter via tuning of Fano resonances in MEMS switchable metamaterials. Proc. IEEE Int. Conf. Micro Electro Mech. Syst. MEMS (2012). https://doi.org/10.1109/MEMSYS.2012.6170081

    Article  Google Scholar 

  • Zhu, L., Zhao, X., Dong, L., Guo, J., He, X.J., Yao, Z.M.: Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators. RSC Adv 2018 8, 27342–27348 (2019)

    Google Scholar 

  • Zohreh, V.: Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications. Appl. Opt. 57, 722–729 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11647143), Natural Science Foundation of Jiangsu Province (Grant No. BK20160189), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51721B), and the Postdoctoral Science Foundation of Jiangsu (Grant No. 2018K113C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Xin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, BX., Lou, P. et al. Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator. Opt Quant Electron 52, 391 (2020). https://doi.org/10.1007/s11082-020-02513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02513-3

Keywords

Navigation