Skip to main content
Log in

Dynamics of quantum correlations for different types of noisy channels

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The effect of noise channels (amplitude damping, phase damping, depolarizing and phase flip) on the behaviors of quantum correlations such as quantum discord (QD), super quantum discord (SQD) within an atom-field interaction with environments are investigated. Generation and preservation of the quantum entanglement between the qubit and field have played an important role for both fundamental quantum theories and experiments. This topic motivates us to explore the role of noise channels on quantum correlations in the Jaynes–Cummings model. Our analytical results show that the entanglement and quantum correlation dynamics is strongly related to the decoherenc strength and type of noisy channel. One purpose of this work is to answer the following question: is it possible the effects of noise channels on entangled states lead to birth of entanglement and quantum correlations or do they just have a destructive effects? We show that, the noise of all above channels do not lead to a sudden vanishing of quantum correlations. But the noise of phase flip channel reproduces initial quantum correlations. Furthermore, we find that entanglement and QD are more fragile to environmental noises than the SQD. For this reason, it seems that our results can be beneficial to deeply understanding the weak measurement and quantum correlation in quantum information resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abdel-Khalek, S.: Quantum fisher information flow and entanglement in pair coherent states. Opt. Quant. Electron. 46(8), 1055–1064 (2014)

    Google Scholar 

  • Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988)

    ADS  Google Scholar 

  • Ali, M., Rau, A., Alber, G.: Quantum discord for two-qubit x states. Phys. Rev. A 81(4), 042105 (2010)

    ADS  Google Scholar 

  • Amer, O., Krawec, W.O.: Semiquantum key distribution with high quantum noise tolerance. Phys. Rev. A 100, 022319 (2019)

    ADS  MathSciNet  Google Scholar 

  • Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T., Vahala, K., Kimble, H.: Observation of strong coupling between one atom and a monolithic microresonator. Nature 443(7112), 671–674 (2006)

    ADS  Google Scholar 

  • Ateto, M.: Qubit-qubit entanglement dynamics control via external classical pumping and kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes. Quantum Inf. Process. 16(11), 267 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070 (1999)

    ADS  MathSciNet  Google Scholar 

  • Bina, M., Casagrande, F., Lulli, A.: Solvable dynamics of n driven two-level atoms coupled to a dissipative cavity mode. Laser Phys. 19(2), 362–367 (2009)

    ADS  Google Scholar 

  • Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)

    ADS  Google Scholar 

  • Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Chen, Q., Zhang, C., Yu, S., Yi, X., Oh, C.: Quantum discord of two-qubit x states. Phys. Rev. A 84(4), 042313 (2011)

    ADS  Google Scholar 

  • Chotorlishvili, L., Toklikishvili, Z.: Chaotic dynamics of coupled two-level atoms in the optical cavity. Eur. Phys. J. D 47(3), 433–445 (2008)

    ADS  MATH  Google Scholar 

  • Collins, D., Stephens, J.: Depolarizing-channel parameter estimation using noisy initial states. Phys. Rev. A 92(3), 032324 (2015)

    ADS  Google Scholar 

  • Daoud, M., Laamara, R.A.: Quantum discord of bell cat states under amplitude damping. J. Phys. A: Math. Theor. 45(32), 325302 (2012)

    MathSciNet  MATH  Google Scholar 

  • Das, J.C., De, D.: Optimized design of flip-flops using quantum-dot cellular automata. Quant. Matter 5(5), 680–688 (2016)

    Google Scholar 

  • Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80(5), 052304 (2009)

    ADS  MathSciNet  Google Scholar 

  • Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72(4), 042316 (2005)

    ADS  Google Scholar 

  • Fan, K.-M., Zhang, G.-F.: Geometric quantum discord and entanglement between two atoms in tavis-cummings model with dipole-dipole interaction under intrinsic decoherence. Eur. Phys. J. D 68(6), 163 (2014)

    ADS  Google Scholar 

  • Goggin, M., Almeida, M., Barbieri, M., Lanyon, B., Obrien, J., White, A., Pryde, G.: Violation of the leggett-garg inequality with weak measurements of photons. Proc. Nat. Acad. Sci. 108(4), 1256–1261 (2011)

    ADS  Google Scholar 

  • Guo, Z., Cao, H., Qu, S.: Partial correlations in multipartite quantum systems. Inf. Sci. 289, 262–272 (2014)

    MathSciNet  MATH  Google Scholar 

  • Guo, Y.-N., Zeng, K., Wang, G.-Y.: Pairwise quantum discord for a symmetric multi-qubit system in different types of noisy channels. Int. J. Theor. Phys. 55(6), 2894–2903 (2016)

    MATH  Google Scholar 

  • Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34(35), 6899 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hwang, M.-J., Puebla, R., Plenio, M.B.: Quantum phase transition and universal dynamics in the rabi model. Phys. Rev. Lett. 115(18), 180404–409 (2015)

    ADS  Google Scholar 

  • Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Google Scholar 

  • Jing, N., Yu, B.: Super quantum discord for general two qubit x states. Quant. Inf. Process. 16(4), 99 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117–120 (2012)

    Google Scholar 

  • Krawec, W.O.: Quantum key distribution with mismatched measurements over arbitary channels. Quant. Inf. Comput. 17(3–4), 209–241 (2017)

    MathSciNet  Google Scholar 

  • Li, P., Zhang, Q., You, J.: Division of the two-qubit hilbert space according to the entanglement sudden death under composite noise environment. arXiv preprint arXiv:0808.1934

  • Liu, Y.-X., Özdemir, Ş.K., Miranowicz, A., Imoto, N.: Kraus representation of a damped harmonic oscillator and its application. Phys. Rev. A 70(4), 042308 (2004)

    ADS  Google Scholar 

  • Lopez, C.E., Romero, G., Lastra, F., Solano, E., Retamal, J.C.: Phys. Rev. Lett. 101, 080503 (2008)

  • Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77(4), 042303 (2008)

    ADS  Google Scholar 

  • Matsukevich, D., Chaneliere, T., Jenkins, S., Lan, S.-Y., Kennedy, T., Kuzmich, A.: Deterministic single photons via conditional quantum evolution. Phys. Rev. Lett. 97(1), 013601 (2006)

    ADS  Google Scholar 

  • Maziero, J., Celeri, L.C., Serra, R., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80(4), 044102 (2009)

    ADS  MathSciNet  Google Scholar 

  • Maziero, J., Werlang, T., Fanchini, F., Céleri, L., Serra, R.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81(2), 022116 (2010)

    ADS  Google Scholar 

  • Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)

    ADS  MathSciNet  Google Scholar 

  • Menzies, D., Korolkova, N.: Weak measurements with entangled probes. Phys. Rev. A 77(6), 062105 (2008)

    ADS  Google Scholar 

  • Metwally, N., Abdelaty, M., Obada, A.-S.: Quantum teleportation via entangled states generated by the jaynes-cummings model. Chaos Solitons Fract. 22(3), 529–535 (2004)

    ADS  MATH  Google Scholar 

  • Mirmasoudi, F., Ahadpour, S.: Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A: Math. Theor. 51(34), 345302 (2018)

    MathSciNet  MATH  Google Scholar 

  • Mirmasoudi, F., Ahadpour, S.: Dynamics super quantum discord and quantum discord teleportation in the jaynes-cummings model. J. Mod. Opt. 65(5–6), 730–736 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Nan-Run, Z., Li-Yun, H., Hong-Yi, F.: Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel. Chin. Phys. B 20(12), 120301 (2011)

    Google Scholar 

  • Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    ADS  MATH  Google Scholar 

  • Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95(11), 110409 (2005)

    ADS  Google Scholar 

  • Ozaydin, F.: Phase damping destroys quantum fisher information of w states. Phys. Lett. A 378(43), 3161–3164 (2014)

    ADS  MATH  Google Scholar 

  • Ramzan, M.: Decoherence dynamics of discord for multipartite quantum systems. Eur. Phys. J. D 67(8), 170 (2013)

    ADS  Google Scholar 

  • Singh, U., Pati, A.K.: Quantum discord with weak measurements. Ann. Phys. 343, 141–152 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Streltsov, A., Adesso, G., Piani, M., Bruß, D.: Are general quantum correlations monogamous? Phys. Rev. Lett. 109(5), 050503 (2012)

    ADS  Google Scholar 

  • Tessier, T., Deutsch, I., Delgado, A., Fuentes-Guridi, I.: Entanglement sharing in the two-atom tavis-cummings model. Phys. Rev. A 68(6), 062316 (2003)

    ADS  Google Scholar 

  • Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of dirac fields in noninertial frames. Phys. Rev. A 81(5), 052120 (2010)

    ADS  Google Scholar 

  • Werlang, T., Souza, S., Fanchini, F., Boas, C.V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80(2), 024103 (2009)

    ADS  Google Scholar 

  • Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Nat. Inst. Stand. Technol. 103(3), 259 (1998)

    MATH  Google Scholar 

  • Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    ADS  MATH  Google Scholar 

  • Wu, S., Mølmer, K.: Weak measurements with a qubit meter. Phys. Lett. A 374(1), 34–39 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Wu, X., Zhou, T.: Quantum discord for the general two-qubit case. Quantum Inf. Process. 14(6), 1959–1971 (2015)

    ADS  MATH  Google Scholar 

  • Xi, Z., Lu, X.-M., Wang, X., Li, Y.: Necessary and sufficient condition for saturating the upper bound of quantum discord. Phys. Rev. A 85(3), 032109 (2012)

    ADS  Google Scholar 

  • Yan, X.-Q., Zhang, B.-Y.: Collapse-revival of quantum discord and entanglement. Ann. Phys. 349, 350–356 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Yao, Y., Li, H.-W., Zou, X.-B., Huang, J.-Z., Zhang, C.-M., Yin, Z.-Q., Chen, W., Guo, G.-C., Han, Z.-F.: Quantum discord in quantum random access codes and its connection to dimension witnesses. Phys. Rev. A 86(6), 062310 (2012)

    ADS  Google Scholar 

  • Yao-Hua, H., Jun-Qiang, W.: Quantum correlations between two non-interacting atoms under the influence of a thermal environment. Chin. Phys. B 21(1), 014203 (2012)

    ADS  Google Scholar 

  • Ying-Hua, J.: Dynamics of super-quantum discord and direct control with weak measurement in open quantum system. Chin. Phys. B 24(12), 120302 (2015)

    Google Scholar 

  • Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quant. Inf. Process. 16(8), 194 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, G.-F., Li, S.-S.: The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system. Opt. Commun. 260(1), 347–350 (2006)

    ADS  Google Scholar 

  • Zhang, G.-F., Xie, X.-C.: Entanglement between two atoms in a damping jaynes-cummings model. Eur. Phys. J. D 60(2), 423–427 (2010)

    ADS  Google Scholar 

  • Zhang, G.-F., Ji, A.-L., Fan, H., Liu, W.-M.: Quantum correlation dynamics of two qubits in noisy environments: the factorization law and beyond. Ann. Phys. 327(9), 2074–2084 (2012)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sodeif Ahadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: a measures of quantum correlations

Appendix: a measures of quantum correlations

For a bipartite system AB quantum discord is given by Ollivier and Zurek (2001):

$$\begin{aligned} DQ(\rho _{AB})=I(\rho _{AB})- C(\rho _{AB}) \end{aligned}$$
(15)

the quantity \(C(\rho _{AB})\) is defined as a measure of classical correlation Mazzola et al. (2010):

$$\begin{aligned} C(\rho _{AB})=S(\rho _{A})-\min _{{\varPi ^{B}_{j}} } S(\rho _{A|B}), \end{aligned}$$
(16)

where \({\{\varPi ^{B}_{j}}\}\) denotes a complete set of positive operator-valued measure (POVM) performed on the subsystem B, in such a way that \(\sum _{j} \varPi ^{B}_{j} =1\). Where \(\rho _{AB}\) denotes the bipartite density matrix of a composite system AB, \(\rho _{A}\) and \(\rho _{B}\) represent the density matrices of parts A and B. The quantity \(S(\rho )= -tr \rho \log \rho\) refers to the Neumann entropy and \(\rho _{A}= tr_{B} \rho _{AB}\) is the entropy of the reduced density matrix, where tr stands for the trace of matrix (Yan and Zhang 2014; Luo 2008; Datta 2009). The total correlation is quantified by the quantum mutual information \(I(\rho _{AB})\):

$$\begin{aligned} I(\rho _{AB})=S(\rho _{A})+S(\rho _{B})- S(\rho _{AB}) \end{aligned}$$
(17)

The reduced matrix of \(\rho _{A}\) and \(\rho _{B}\) is given by:

$$\begin{aligned} \begin{array}{cc} S(\rho _{A}) = -(\rho _{11} + \rho _{22}) \log _{2}(\rho _{11} + \rho _{22})- (\rho _{33} + \rho _{44}) \log _{2}(\rho _{33} + \rho _{44})\\ S(\rho _{B}) = -(\rho _{11} + \rho _{33}) \log _{2}(\rho _{11} + \rho _{33}) - (\rho _{22} + \rho _{44}) \log _{2}(\rho _{22} + \rho _{44}) \end{array} \end{aligned}$$
(18)

The eigenvalues of the density matrix \(S(\rho _{AB})= \varSigma ^{4}_{i=1} \epsilon _{i} \log ^{\epsilon _{i}}_{2}\) are given by:

$$\begin{aligned} \begin{array}{cc} \epsilon _{1}& = \frac{1}{2}[(\rho _{11} + \rho _{44})+\sqrt{(\rho _{11} - \rho _{44})^{2}+4 |\rho _{14}|^{2}}]\\ \epsilon _{2}& = \frac{1}{2} [(\rho _{11} + \rho _{44})-\sqrt{(\rho _{11} - \rho _{44})^{2}+4 |\rho _{14}|^{2}} ]\\ \epsilon _{3}& = \frac{1}{2} [(\rho _{22} + \rho _{33})+\sqrt{(\rho _{22} - \rho _{33})^{2}+4 |\rho _{23}|^{2}} ]\\ \epsilon _{4}& = \frac{1}{2} [(\rho _{22} + \rho _{33})-\sqrt{(\rho _{22} - \rho _{33})^{2}+4 |\rho _{23}|^{2}} ] \end{array} \end{aligned}$$
(19)

For the simplest case of two-qubit state described by the density matrix \(\rho\), the analytical expression of the QD is specified by:

$$\begin{aligned} DQ(\rho _{AB}) = \min (Q_{1},Q_{2}), \end{aligned}$$
(20)

where,

$$\begin{aligned} Q_{j}= & H( \rho _{11} + \rho _{33} ) + \sum ^{4} _{i=1}\epsilon _{i} \log _{2} \epsilon _{i} + D_{j} ,\\ D_{1}= & H\left(\frac{1+\sqrt{[1-2(\rho _{33} + \rho _{44})]^{2}+4(|\rho _{14}|+|\rho _{23}|)^{2}}}{2}\right),\\ D_{2}= & -\sum _{i} \rho _{ii} \log _{2}^{\rho _{ii}} -H( \rho _{11} + \rho _{33} ),\\ H(x)= & -x \log _{2}{x}-(1-x)\log _{2}{({1-x})}. \end{aligned}$$

1.1 Super quantum discord

The weak measurement operators are given as (Wang et al. 2010; Datta et al. 2005; Jing and Yu 2017; Das and De 2016; Singh and Pati 2014):

$$\begin{aligned} \begin{array}{cc} P(\pm x)=\sqrt{\frac{1\mp \tanh x}{2}}\varPi _{0}+\sqrt{\frac{1\pm \tanh x }{2}}\varPi _{1} \end{array} \end{aligned}$$
(21)

where x is the strength parameter of measurement, \(\varPi _{0}\) and \(\varPi _{1}\) are orthogonal projectors that satisfy \(\varPi _{0}+\varPi _{1}=I\). In addition, in the strong measurement limit we have the projective measurement operators \(\lim _{x\rightarrow \infty } P(+x)= \varPi _{0}\) and \(\lim _{x\rightarrow \infty }P(-x) = \varPi _{1}\).

If we replace all projection measurements with weak measurements in classical correlation and QD, it leads to a new type of quantum correlations called SQD. The super quantum discord denoted by \(D_{w}(\rho _{AB})\) is defined as:

$$\begin{aligned} \begin{array}{cc} D_{w}(\rho _{AB})=S(\rho _{B})-S(\rho _{AB})+\min _ {{\{\varPi _{i}^{B}}\}} S_{w}(A|{P^{B}(x)}) \end{array} \end{aligned}$$
(22)

This is a positive quantity which follows from monotonicity of the mutual information, where the weak quantum conditional entropy is given by:

$$\begin{aligned} \begin{array}{cc} S_{w}(A|{P^{B}(x)})=P(+x) S(\rho _{A|P^{B}(+x)})+P(-x) S(\rho _{A|P^{B}(-x)}), \end{array} \end{aligned}$$
(23)

with

$$\begin{aligned} P(\pm x)=tr_{AB}[(I_{A}\otimes P^{B}(\pm x))\rho _{AB} (I_{A}\otimes P^{B}(\pm x))], \end{aligned}$$

and

$$\begin{aligned} \rho _{A|P^{B}(\pm x)}=\frac{tr_{B}[(I_{A}\otimes P^{B}(\pm x))\rho _{AB} (I_{A}\otimes P^{B}(\pm x))]}{tr_{AB}[(I_{A}\otimes P^{B}(\pm x))\rho _{AB} (I_{A}\otimes P^{B}(\pm x))}. \end{aligned}$$

where \(I_{A}\) is the identity operator on the Hilbert space \(\textit{H}_{A}\). Also, \(P^{B}(\pm x)\) is the weak measurement operator performed on subsystem B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadpour, S., Mirmasoudi, F. Dynamics of quantum correlations for different types of noisy channels. Opt Quant Electron 52, 369 (2020). https://doi.org/10.1007/s11082-020-02474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02474-7

Keywords

Navigation