Skip to main content
Log in

Highly sensitive bimetallic plasmonic sensing probe for aqueous samples

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In spite of having very large real part of permittivity, Rhodium (Rh) is rarely used as a plasmonic metal in surface plasmon resonance (SPR) based sensing applications. Here, we theoretically present a simple SPR based prism-coupled refractive index sensor in Kretschmann geometry utilizing a bimetallic layer of Rhodium (Rh) and Silver (Ag) as plasmonic metal layer on the base of the SF10 glass prism. In addition Silicon is used as an upper most layer, which not only protects the oxidation-prone Ag film but also enhances the field and thereby the sensor’s performance. Each of the layers is optimized for maximum sensitivity in the visible region at 632 nm wavelength of excitation. The sensor exhibits an extremely high sensitivity of 229 degree/refractive index unit (RIU) for analyte refractive indices (RIs) varying from 1.33 to 1.37 RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdulhalim, I.: Enhancing the Sensitivity of Surface-Plasmon Resonance Sensors. SPIE (2009)

  • Acuna, G., Heucke, S.F., Kuchler, F., Chen, H.T., Taylor, A.J., Kersting, R.: Surface plasmons in terahertz metamaterials. Opt. Exp. 16, 18745–18751 (2008)

    Article  ADS  Google Scholar 

  • A. M. N. L. Leiva Casemiro Oliveira, Carsten Thirstrup, Helmut Franz Neff, Surface Plasmon Resonance Sensors. Springer, Switzerland (2015)

  • Fischer, H., Martin, O.J.F.: Engineering the optical response of plasmonic nanoantennas. Opt. Exp. 16, 9144–9154 (2008)

    Article  ADS  Google Scholar 

  • Franzen, S.: Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J. Phys. Chem. C 112, 6027–6032 (2008)

    Article  Google Scholar 

  • Hansen, W.N.: Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. J. Opt. Soc. Am. 58, 380–390 (1968)

    Article  ADS  Google Scholar 

  • Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  • Homola, J.: Surface Plasmon Resonance Based Sensors 4 (2006)

  • Kumar, A., Mishra, A.K.: Anomalous self-steepening, temporal pulse splitting and ring formation in a left-handed metamaterial with cubic nonlinearity. J. Opt. Soc. Am. B 29, 1330–1337 (2012)

    Article  ADS  Google Scholar 

  • Li, H.H.: Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9, 161–290 (1980)

    Article  ADS  Google Scholar 

  • Mishra, S.K., Gupta, B.D.: Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst 138, 2640–2646 (2013)

    Article  ADS  Google Scholar 

  • Mishra, A.K., Mishra, S.K.: Infrared SPR sensitivity enhancement using ITO/TiO 2/silicon overlays. EPL (Europhysics Letters) 112, 1–5 (2015)

    Article  Google Scholar 

  • Mishra, A.K., Mishra, S.K., Verma, R.K.: An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J. Phys. D Appl. Phys. 48, 1–5 (2015a)

    Article  Google Scholar 

  • Mishra, A.K., Mishra, S.K., Gupta, B.D.: Gas-clad two-way fiber optic spr sensor: a novel approach for refractive index sensing. Plasmonics 10, 1071–1076 (2015b)

    Article  Google Scholar 

  • Mishra, A.K., et al.: Doped single-wall carbon nanotubes in propagating surface plasmon resonance based fiber optic refractive index sensing. Plasmonics (2016a). https://doi.org/10.1007/s11468-016-0431-y

    Article  Google Scholar 

  • Mishra, A.K., et al.: Gas sensing in Kretschmann configuration utilizing bi-metallic layer of Rhodium-Silver in visible region. Sen. Actuat. B Chem. 237, 969 (2016b)

    Article  Google Scholar 

  • Mishra, A.K., Mishra, S.K., Verma, R.K.: Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J. Phys. Chem. C 120, 2893–2900 (2016c)

    Article  Google Scholar 

  • Mishra, S.K., Zou, B., Chiang, K.S.: Surface-plasmon-resonance refractive-index sensor with Cu-coated polymer waveguide. Photon. Technol. Lett. 28, 1835–1838 (2016d)

    Article  ADS  Google Scholar 

  • Rhodes, C., Franzen, S., Maria, J.-P., Losego, M., Leonard, D.N., Laughlin, B., et al.: Surface plasmon resonance in conducting metal oxides. J. Appl. Phys. 100, 1–4 (2006)

    Article  Google Scholar 

  • Rhodes, C., Cerruti, M., Efremenko, A., Losego, M., Aspnes, D.E., Maria, J.-P., et al.: Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 103, 1–6 (2008)

    Article  Google Scholar 

  • Schott, I.: North America, Schott Optical Glass Collection Datasheets. USA (2015)

  • Shalabney, A., Abdulhalim, I.: Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuat. A 159, 24–32 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Akhilesh Kumar Mishra acknowledges the support from Indian Institute of Technology Roorkee, India in form of Faculty Initiation Grant (FIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Malviya, K.D. & Mishra, A.K. Highly sensitive bimetallic plasmonic sensing probe for aqueous samples. Opt Quant Electron 52, 284 (2020). https://doi.org/10.1007/s11082-020-02397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02397-3

Keywords

Navigation