Skip to main content
Log in

Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Controllable transparency and slow light are discussed theoretically in a hybrid optomechanical system consisting of quantum dot molecules (QDMs). Fano resonance occurs when a pump laser is applied and its characteristics are investigated under controlling different system parameters. The group velocity index of slow light is analyzed and can be adjusted by the tunneling effect in the QDMs. Such a result may be used to design tunable optical buffer or in other quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Nashy, B., Amin, S.M.M., Al-Khursan, A.H.: Kerr effect in Y-configuration double-quantum-dot system. JOSA B 31(8), 1991–1996 (2014)

    Article  ADS  Google Scholar 

  • Bhattacherjee, A.B., Hasan, M.S.: Controllable optical bistability and Fano line shape in a hybrid optomechanical system assisted by kerr medium: possibility of all optical switching. J. Mod. Opt. 65(14), 1688–1697 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  • Chen, B., Jiang, C., Zhu, K.D.: Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate. JOSA B 28(8), 2007–2013 (2011)

    Article  ADS  Google Scholar 

  • Chen, H.J., Zhao, D.M., Wu, H.W., et al.: Controllable and tunable multiple optomechanically induced transparency and Fano resonance mediated by different mechanical resonators. AIP Adv. 9(7), 075105 (2019)

    Article  ADS  Google Scholar 

  • Farace, A., Giovannetti, V.: Enhancing quantum effects via periodic modulations in optomechanical systems. Phys. Rev. A 86(1), 013820 (2012)

    Article  ADS  Google Scholar 

  • Forstner, S., Prams, S., Knittel, J., et al.: Cavity optomechanical magnetometer. Phys. Rev. Lett. 108(12), 120801 (2012)

    Article  ADS  Google Scholar 

  • Gigan, S., Böhm, H.R., Paternostro, M., et al.: Self-cooling of a micromirror by radiation pressure. Nature 444(7115), 67 (2006)

    Article  ADS  Google Scholar 

  • Guo, Y., Li, K., Nie, W., et al.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90(5), 053841 (2014)

    Article  ADS  Google Scholar 

  • He, L.Y.: Parity-time-symmetry–enhanced sideband generation in an optomechanical system. Phys. Rev. A 99(3), 033843 (2019)

    Article  ADS  Google Scholar 

  • He, Q., Badshah, F., Din, R.U., et al.: Multiple transparency in a multimode quadratic coupling optomechanical system with an ensemble of three-level atoms. JOSA B 35(10), 2550–2561 (2018a)

    Article  ADS  Google Scholar 

  • He, Q., Badshah, F., Din, R.U., et al.: Optomechanically induced transparency and the long-lived slow light in a nonlinear system. JOSA B 35(7), 1649–1657 (2018b)

    Article  ADS  Google Scholar 

  • Hou, B.P., Wei, L.F., Wang, S.J.: Optomechanically induced transparency and absorption in hybridized optomechanical systems. Phys. Rev. A 92(3), 033829 (2015)

    Article  ADS  Google Scholar 

  • Huang, R., Miranowicz, A., Liao, J.Q., et al.: Nonreciprocal photon blockade. Phys. Rev. Lett. 121(15), 153601 (2018)

    Article  ADS  Google Scholar 

  • Jiang, C., Liu, H., Cui, Y., et al.: Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Phys. Rev. A 88(5), 055801 (2013)

    Article  ADS  Google Scholar 

  • Jiang, C., Bian, X., Cui, Y., et al.: Optical bistability and dynamics in an optomechanical system with a two-level atom. JOSA B 33(10), 2099–2104 (2016)

    Article  ADS  Google Scholar 

  • Jing, H., Özdemir, Ş.K., Geng, Z., et al.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Scientific reports 5, 9663 (2015)

    Article  Google Scholar 

  • Kaviani H, Ghobadi R, Behera B, et al.: Optomechanical Detection of Light with Orbital Angular Momentum. arXiv preprint arXiv:1912.08413 (2019)

  • Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95(3), 033820 (2017)

    Article  ADS  Google Scholar 

  • Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111(13), 133601 (2013)

    Article  ADS  Google Scholar 

  • Kyriienko, O., Liew, T.C.H., Shelykh, I.A.: Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability. Phys. Rev. Lett. 112(7), 076402 (2014)

    Article  ADS  Google Scholar 

  • Lei, F.C., Gao, M., Du, C., et al.: Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Opt. Express 23(9), 11508–11517 (2015)

    Article  ADS  Google Scholar 

  • Li, G., Nie, W., Li, X., et al.: Dynamics of ground-state cooling and quantum entanglement in a modulated optomechanical system. Phys. Rev. A 100(6), 063805 (2019)

    Article  ADS  Google Scholar 

  • Liu, L., Yue, J., Li, Z.: All-optical switch based on a fiber-chip-fiber opto-mechanical system with ultrahigh extinction ratio. IEEE Photonics J. 9(3), 1–8 (2017)

    Google Scholar 

  • Liu, Z.X., Xiong, H., Wu, Y.: Generation and amplification of a high-order sideband induced by two-level atoms in a hybrid optomechanical system. Phys. Rev. A 97(1), 013801 (2018)

    Article  ADS  Google Scholar 

  • Ma, P.C., Zhang, J.Q., Xiao, Y., et al.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90(4), 043825 (2014)

    Article  ADS  Google Scholar 

  • Ma, P.C., Yan, L.L., Chen, G.B., et al.: A simple and tunable switch between slow-and fast-light in two signal modes with an optomechanical system. Laser Phys. Lett. 13(12), 125301 (2016)

    Article  ADS  Google Scholar 

  • Mirza, I.M., van Enk, S.J.: Single-photon time-dependent spectra in quantum optomechanics. Phys. Rev. A 90(4), 043831 (2014)

    Article  ADS  Google Scholar 

  • Nunnenkamp, A., Børkje, K., Girvin, S.M.: Single-photon optomechanics. Phys. Rev. Lett. 107(6), 063602 (2011)

    Article  ADS  Google Scholar 

  • O’Connell, A.D., Hofheinz, M., Ansmann, M., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697 (2010)

    Article  ADS  Google Scholar 

  • Prakash V N, Bhattacherjee A B. Fano profile in double cavity optomechanical system with harmonically bound mirrors. arXiv preprint arXiv:1911.10788 (2019)

  • Qu, K., Agarwal, G.S.: Fano resonances and their control in optomechanics. Phys. Rev. A 87(6), 063813 (2013)

    Article  ADS  Google Scholar 

  • Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107(6), 063601 (2011)

    Article  ADS  Google Scholar 

  • Reinhardt, C., Müller, T., Bourassa, A., et al.: Ultralow-noise SiN trampoline resonators for sensing and optomechanics. Phys. Rev. X 6(2), 021001 (2016)

    Google Scholar 

  • Riedinger, R., Wallucks, A., Marinković, I., et al.: Remote quantum entanglement between two micromechanical oscillators. Nature 556(7702), 473 (2018)

    Article  ADS  Google Scholar 

  • Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., et al.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69 (2011)

    Article  ADS  Google Scholar 

  • Sarma, B., Sarma, A.K.: Controllable optical bistability in a hybrid optomechanical system. JOSA B 33(7), 1335–1340 (2016)

    Article  ADS  Google Scholar 

  • Schliesser, A., Del’Haye, P., Nooshi, N., et al.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97(24), 243905 (2006)

    Article  ADS  Google Scholar 

  • She, Y., Zheng, X., Wang, D., et al.: Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule. Opt. Express 21(14), 17392–17403 (2013)

    Article  ADS  Google Scholar 

  • Shi, H.Q., Zhou, X.T., Xu, X.W., et al.: Tunable phonon blockade in quadratically coupled optomechanical systems. Sci. Rep. 8(1), 2212 (2018)

    Article  ADS  Google Scholar 

  • Si, L.G., Guo, L.X., Xiong, H., et al.: Tunable high-order-sideband generation and carrier-envelope-phase–dependent effects via microwave fields in hybrid electro-optomechanical systems. Phys. Rev. A 97(2), 023805 (2018)

    Article  ADS  Google Scholar 

  • Sohail, A., Zhang, Y., Zhang, J., et al.: Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Sci. Rep. 6, 28830 (2016)

    Article  ADS  Google Scholar 

  • Sun, X.J., Wang, X., Liu, L.N., et al.: Optical-response properties in hybrid optomechanical systems with quadratic coupling. J. Phys. B: At. Mol. Opt. Phys. 51(4), 045504 (2018)

    Article  ADS  Google Scholar 

  • Teufel, J.D., Donner, T., Li, D., et al.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475(7356), 359 (2011)

    Article  ADS  Google Scholar 

  • Ullah, K.: Control of electromagnetically induced transparency and Fano resonances in a hybrid optomechanical system. Eur. Phys. J. D 73(12), 267 (2019)

    Article  ADS  Google Scholar 

  • Wang, G., Huang, L., Lai, Y.C., et al.: Nonlinear dynamics and quantum entanglement in optomechanical systems. Phys. Rev. Lett. 112(11), 110406 (2014)

    Article  ADS  Google Scholar 

  • Wang, H., Gu, X., Liu, Y., et al.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92(3), 033806 (2015)

    Article  ADS  Google Scholar 

  • Weis, S., Rivière, R., Deléglise, S., et al.: Optomechanically induced transparency. Science 330(6010), 1520–1523 (2010)

    Article  ADS  Google Scholar 

  • Wu, Q.: Tunable optomechanically induced absorption with quantum fields in an optomechanical system. JOSA B 32(8), 1712–1717 (2015)

    Article  ADS  Google Scholar 

  • Xiong, H., Wu, Y.: Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5(3), 031305 (2018)

    Article  ADS  Google Scholar 

  • Xiong, H., Si, L.G., Zheng, A.S., et al.: Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 86(1), 013815 (2012)

    Article  ADS  Google Scholar 

  • Yan, X.B., Gu, K.H., Fu, C.B., et al.: Optical switching of optomechanically induced transparency and normal mode splitting in a double-cavity system. Eur. Phys. J. D 68(5), 126 (2014)

    Article  ADS  Google Scholar 

  • Yang, W.X., Chen, A.X., Xie, X.T., et al.: Enhanced generation of higher-order sidebands in a single-quantum-dot–cavity system coupled to a PT-symmetric double cavity. Phys. Rev. A 96(1), 013802 (2017)

    Article  ADS  Google Scholar 

  • Yasir, K.A., Liu, W.M.: Tunable bistability in hybrid Bose-Einstein condensate optomechanics. Sci. Rep. 5, 10612 (2015)

    Article  ADS  Google Scholar 

  • Yasir, K.A., Liu, W.M.: Controlled electromagnetically induced transparency and Fano resonances in hybrid BEC-optomechanics. Sci. Rep. 6, 22651 (2016)

    Article  ADS  Google Scholar 

  • Yeo, I., De Assis, P.L., Gloppe, A., et al.: Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol. 9(2), 106–110 (2014)

    Article  ADS  Google Scholar 

  • Yu, C.: Electromagnetically induced transparency in quantum dot biexciton–exciton cascaded scheme. Opt. Quant. Electron. 46(9), 1157–1164 (2014)

    Article  Google Scholar 

  • Zhang, X.Y., Guo, Y.Q., Pei, P., et al.: Optomechanically induced absorption in parity-time-symmetric optomechanical systems. Phys. Rev. A 95(6), 063825 (2017)

    Article  ADS  Google Scholar 

  • Zhang, X.Y., Zhou, Y.H., Guo, Y.Q., et al.: Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical systems. Phys. Rev. A 98(3), 033832 (2018)

    Article  ADS  Google Scholar 

  • Zhou, X., Hocke, F., Schliesser, A., et al.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9(3), 179–184 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11447182, 11447172 and 11547007), the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxing Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Yang, W., Sun, L. et al. Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules. Opt Quant Electron 52, 267 (2020). https://doi.org/10.1007/s11082-020-02390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02390-w

Keywords

Navigation