Skip to main content
Log in

Self-focusing of multi-Gaussian laser beams in nonlinear optical media as a Kepler’s central force problem

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper self-focusing of multi-Gaussian laser beam in nonlinear optical media has been investigated theoretically. Saturation of the optical nonlinearity has been incorporated through cubic-quintic model. Moment theory approach in W.K.B approximation has been invoked to find the numerical solution of nonlinear wave equation for the field of incident laser beam. Particularly the dynamical evolutions of the beam width of the laser beam with distance of propagation have been investigated in detail. It has been shown that the self-focusing of the laser beam resembles to Kepler’s central force problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Askaryan, G.A.: Effects of the gradient of strong electromagnetic beam on electrons and atoms. Sov. Phys. JETP 15, 1088–1090 (1962)

    Google Scholar 

  • Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1965)

    Article  ADS  Google Scholar 

  • Gaeta, A.L., Boyd, R.W.: Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A 44, 3205–3209 (1991)

    Article  ADS  Google Scholar 

  • Gupta, N., Singh, A.: Effect of cross-focusing of two q-Gaussian laser beams on excitation of electron plasma wave in collisional plasma. Optik 127, 8542–8553 (2016)

    Article  ADS  Google Scholar 

  • Karlsson, M.: Optical beams in saturable self-focusing media. Phys. Rev. A 46, 2726–2734 (1992)

    Article  ADS  Google Scholar 

  • Karlsson, M., Anderson, D., Desaix, M., Lisak, M.: Dynamic effects of Kerr nonlinearity and spatial diffraction on self-phase modulation of optical pulses. Opt. Lett. 16, 1373–1375 (1991)

    Article  ADS  Google Scholar 

  • Karlsson, M., Anderson, D., Desaix, M.: Dynamics of self-focusing and self-phase modulation in a parabolic index optical fiber. Opt. Lett. 17, 22–24 (1992)

    Article  ADS  Google Scholar 

  • Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965)

    Article  ADS  Google Scholar 

  • Lam, J.F., Lippmann, B., Tappert, F.: Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15, 419–421 (1975)

    Article  ADS  Google Scholar 

  • Lam, J.F., Lippmann, B., Tappert, F.: Self-trapped laser beams in plasma. Phys. Fluids 20, 1176–1179 (1977)

    Article  ADS  Google Scholar 

  • Maiman, T.H.: Stimulated optical radiation in Ruby. Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  • Manassah, J.T., Baldeck, P.L., Alfano, R.R.: Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt. Lett. 13, 589–591 (1988)

    Article  ADS  Google Scholar 

  • Milchberg, H.M., Durfee III, C.G., McIlrath, T.J.: High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 2494–2497 (1995)

    Article  ADS  Google Scholar 

  • Moshkelgosha, M.: Controlling the self-focusing of quadruple Gaussian beam in plasma. IEEE Trans. Plasma Sci. 44, 894–898 (2016)

    Article  ADS  Google Scholar 

  • Sati, P., Sharma, A., Tripathi, V.K.: Self focusing of a quadruple Gaussian laser beam in a plasma. Phys. Plasmas 19, 092117 (2012)

    Article  ADS  Google Scholar 

  • Singh, A., Gupta, N.: Second harmonic generation by self focused q-Gaussian laser beam in preformed collisional parabolic plasma channel. Optik 127, 2432–2438 (2016)

    Article  ADS  Google Scholar 

  • Singh, T.S., Mahajan, R., Kaur, R.: Relativistic self-focusing of super-Gaussian laser beam in plasma with transverse magneticfield. Laser Part. Beams 30, 509–516 (2012)

    Article  ADS  Google Scholar 

  • Singh, N., Gupta, N., Singh, A.: Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption. Opt. Commun. 381, 180–188 (2016)

    Article  ADS  Google Scholar 

  • Subbarao, D., Batra, K., Uma, R.: Paraxial theory of slow self-focusing. Phys. Rev. E 68, 066403 (2003)

    Article  ADS  Google Scholar 

  • Winterfeldt, C., Spielmann, C., Gerber, G.: Optimal control of high-harmonic generation. Rev. Mod. Phys. 80, 117–140 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Using Eq. (5) in

$$\begin{aligned} I_0=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|\psi |^2dxdy, \end{aligned}$$

we get

$$\begin{aligned} I_0=\pi E_{00}^2r_0^2(1+3e^{-\frac{x_0^2}{2r_0^2}}). \end{aligned}$$
(21)

In deriving Eq. (21) we have made use of following standard integrals

$$\begin{aligned} \int _0^{\infty }e^{-\frac{(x\mp x_0f)}{r_0^2f^2}}dx & = \frac{\sqrt{\pi }}{2}r_0f\left( 1\pm erf\left( \frac{x_0}{r_0}\right) \right) , \\ \int _0^{\infty }e^{-\frac{x^2}{r_0^2f^2}}dx & = \frac{\sqrt{\pi }}{2}r_0f,\\ \int _0^{\infty }e^{-\frac{((x-x_0f)^2+(x+x_0f)^2)}{2r_0^2f^2}}dx & = \frac{\sqrt{\pi }}{2}r_0fe^{-\frac{x_0^2}{r_0^2}}. \end{aligned}$$

Now, using Eqs. (5) and (21) in

$$\begin{aligned} \langle x^2\rangle & = \frac{1}{I_0}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }x^2|\psi |^2dxdy,\\ \langle y^2\rangle & = \frac{1}{I_0}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }y^2|\psi |^2dxdy, \end{aligned}$$

we get

$$\begin{aligned} \langle x^2\rangle =\langle y^2\rangle =\frac{r_0^2f^2}{\left(1+3e^{-\frac{x_0^2}{2r_0^2}}\right)} \left\{ 1+2e^{-\frac{x_0^2}{r_0^2}}+\left( 2\frac{x_0^2}{r_0^2}+1\right) +\left( 2+\frac{x_0^2}{r_0^2}\right) e^{-\frac{x_0^2}{2r_0^2}}\right\} . \end{aligned}$$
(22)

In deriving Eq. (22) we have used following integral

$$\begin{aligned} \int _0^{\infty }x^2e^{-\frac{(x\mp x_0f)^2}{r_0^2f^2}}dx=\frac{1}{4}r_0fe^{-\frac{x_0^2}{r_0^2}}\left\{ \pm 2r_0x_0f^2+(2x_0^2f^2+r_0^2f^2)e^{-\frac{x_0^2}{r_0^2}}\sqrt{\pi }\left( 1\pm erf\left( \frac{x_0}{r_0}\right) \right) \right\} . \end{aligned}$$

Using Eq. (22) in (6) we get Eq. (7) i.e.,

$$\begin{aligned} \sigma _{M.G}(0)=\frac{\sqrt{2}r_0}{\left(1+3e^{-\frac{x_0^2}{2r_0^2}}\right)^\frac{1}{2}} \left\{ \left( 2+2\frac{x_0^2}{r_0^2}\right) +\left( 2+\frac{x_0^2}{r_0^2}\right) e^{-\frac{x_0^2}{2r_0^2}} +2e^{-\frac{x_0^2}{2r_0^2}}\right\} ^\frac{1}{2}. \end{aligned}$$

Now, differentiating Eq. (6) with respect to ‘z’ we get

$$\begin{aligned} \frac{d\sigma ^2}{dz}=\frac{1}{I_0}\int _{-\infty }^{\infty } \int _{-\infty }^{\infty }(x^2+y^2)\left( \psi ^{\star }\frac{\partial \psi }{\partial z}+\psi \frac{\partial \psi ^{\star }}{\partial z}\right) dxdy. \end{aligned}$$
(23)

From Eq. (3) we can write

$$\begin{aligned} \frac{\partial \psi }{\partial z} & = -\frac{\iota }{2k_0}\left( \frac{\partial ^2\psi }{\partial x^2}+\frac{\partial ^2\psi }{\partial y^2}\right) -\iota \frac{k_0}{2n_0^2}\phi (|\mathbf {E}|^2)\psi , \end{aligned}$$
(24)
$$\begin{aligned} \frac{\partial \psi ^{\star }}{\partial z} & = \frac{\iota }{2k_0}\left( \frac{\partial ^2\psi ^{\star }}{\partial x^2}+\frac{\partial ^2\psi ^{\star }}{\partial y^2}\right) +\iota \frac{k_0}{2n_0^2}\phi (|{\mathbf{E}}|^{\mathbf{2}})\psi ^{\star }. \end{aligned}$$
(25)

Using Eqs. (24), (25) in (23) we get

$$\begin{aligned} \frac{d\sigma ^2}{dz}=\frac{\iota }{2I_0k_0} \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }(x^2+y^2) \left\{ \psi \left( \frac{\partial ^2\psi ^{\star }}{\partial x^2}+\frac{\partial ^2\psi ^{\star }}{\partial y^2}\right) -\psi ^{\star }\left( \frac{\partial ^2\psi }{\partial x^2}+\frac{\partial ^2\psi }{\partial y^2}\right) \right\} dxdy. \end{aligned}$$
(26)

Differentiating Eq. (26) again with respect to ‘z’ we get

$$\begin{aligned} \frac{d^2\sigma ^2}{dz^2} & = \frac{\iota }{2I_0k_0}\int _{-\infty }^{\infty } \int _{-\infty }^{\infty }(x^2+y^2)\left\{ \frac{\partial ^2}{\partial x^2}\left( \frac{\partial \psi ^{\star }}{\partial z}\right) +\left( \frac{\partial ^2}{\partial y^2}\left( \frac{\partial \psi ^{\star }}{\partial z}\right) \right) \psi +\left( \frac{\partial ^2\psi ^{\star }}{\partial x^2}+\frac{\partial ^2\psi ^{\star }}{\partial y^2}\right) \frac{\partial \psi }{\partial z}\right. \nonumber \\&\quad \left. -\,\left( \frac{\partial ^2}{\partial x^2}\left( \frac{\partial \psi }{\partial z}\right) +\frac{\partial ^2}{\partial y^2}\left( \frac{\partial \psi }{\partial z}\right) \right) \psi ^{\star }-\left( \frac{\partial \partial ^2\psi }{\partial x^2}+\frac{\partial ^2\psi }{\partial y^2}\right) \frac{\partial \psi ^{\star }}{\partial z}\right\} dxdy. \end{aligned}$$
(27)

By making use of Eqs. (24) and (25) in above equation one can get Eq. (9) i.e.,

$$\begin{aligned} \frac{d^2}{dz^2}\sigma ^2_{M.G}=\frac{1}{I_0k_0^2}\int \int \left( \left| \frac{\partial \psi }{\partial x}\right| ^2+\left| \frac{\partial \psi }{\partial y}\right| ^2\right) dxdy+\frac{1}{2}\frac{1}{\epsilon _0I_0}\int \int \left( x\frac{\partial \phi }{\partial x}+y\frac{\partial \phi }{\partial y}\right) \psi \psi ^{\star }dxdy. \end{aligned}$$

Appendix 2

Using Eq. (5) we get

$$\begin{aligned} \frac{1}{I_0}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty } \left( \left| \frac{\partial \psi }{\partial x}\right| ^2+\left| \frac{\partial \psi }{\partial y}\right| ^2\right) dxdy=\frac{1}{r_0^2f^2}\frac{\left\{ 1+e^{-\frac{x_0^2}{r_0^2}} \left( 1-\frac{x_0^2}{r_0^2}\right) +e^{-\frac{x_0^2}{2r_0^2}} \left( 2-\frac{x_0^2}{r_0^2}\right) \right\} }{(1+3e^{-\frac{x_0^2}{2r_0^2}})}. \end{aligned}$$
(28)

In deriving Eq. (28) we have used the standard integral

$$\begin{aligned} \int _0^{\infty }(x\mp x_0f)^2e^{-\frac{(x\mp x_0f)^2}{r_0^2f^2}}dx =\frac{1}{4}r_0^2f^2\left\{ \mp 2x_0fe^{-\frac{x_0^2}{r_0^2}}+\sqrt{\pi }r_0f\pm \sqrt{\pi }r_0ferf\left( \frac{x_0}{r_0}\right) \right\} . \end{aligned}$$

Using Eqs. (4), (7), (21) and (28) in Eq. (9) we get Eq. (10) with

$$\begin{aligned} I_n & = \int _0^{\infty }\int _0^{\infty }t_1G^{2n+1}(t_1,t_2)e^{-\frac{t_2^2}{2}}\left[ \Sigma _{j=1}^2\left( t_1+(-1)^j\frac{x_0}{r_0}\right) e^{-\frac{(t_1+(-1)^j\frac{x_0}{r_0})^2}{2}}\right] dt_1dt_2,\\ K_n & = \int _0^{\infty }\int _0^{\infty }t_1^2G^{2n+1}(t_1,t_2)e^{-\frac{t_1^2}{2}}\left[ \Sigma _{j=1}^2e^{-\frac{(t_1+(-1)^j\frac{x_0}{r_0})^2}{2}}\right] dt_1dt_2.\\ G^{2n+1}(t_1,t_2) & = \left[ e^{-\frac{(t_1-\frac{x_0}{r_0})^2+t_2^2}{2}}+e^{-\frac{(t_1+\frac{x_0}{r_0})^2+t_2^2}{2}}+e^{-\frac{t_1^2+(t_2-\frac{x_0}{r_0})^2}{2}}+e^{-\frac{t_1^2+(t_2+\frac{x_0}{r_0})^2}{2}}\right] ^{2n+1},\\ n & = 1,2 \\ t_1 & = \frac{x}{r_0f}, \\ t_2 & = \frac{y}{r_0f}. \end{aligned}$$

The function \(G^3(t_1,t_2)\) appears due to cubic nonlinearity of the medium whereas the function \(G^5(t_1,t_2)\) appears due to quintic nonlinearity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, S. Self-focusing of multi-Gaussian laser beams in nonlinear optical media as a Kepler’s central force problem. Opt Quant Electron 52, 178 (2020). https://doi.org/10.1007/s11082-020-02294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02294-9

Keywords

Navigation