Skip to main content
Log in

Evolution of size distribution of Si nanoparticles produced by pulsed laser ablation in water

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we study ablation of silicon in distilled water under the action of laser pulses with nanosecond duration. The size distribution of produced particles depends on the laser processing parameters and therefore can be modified by the varying distance between laser pulses, laser fluence or pulse duration. The properties of fabricated nanostructures are investigated by scanning electron microscopy to acquire statistical information on nanoparticle sizes. These results can be promising for dielectric nanophotonics, photovoltaics or cancer treatment where relatively large spherical silicon particles are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abderrafi, K., García Calzada, R., Gongalsky, M.B., Suárez, I., Abarques, R., Chirvony, V.S., Timoshenko, V.Y., Ibáñez, R., Martínez-Pastor, J.P.: Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid. J. Phys. Chem. C 115, 5147–5151 (2011). https://doi.org/10.1021/jp109400v

    Article  Google Scholar 

  • Baryshnikova, K.V., Petrov, M.I., Babicheva, V.E., Belov, P.A.: Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci. Rep. 6, 22136 (2016)

    Article  ADS  Google Scholar 

  • De Giacomo, A., Dell’Aglio, M., Santagata, A., Gaudiuso, R., De Pascale, O., Wagener, P., Messina, G.C., Compagnini, G., Barcikowski, S.: Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys. 15, 3083–3092 (2013)

    Article  Google Scholar 

  • Dolgaev, S.I., Simakin, A.V., Voronov, V.V., Shafeev, G.A., Bozon-Verduraz, F.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186, 546–551 (2002)

    Article  ADS  Google Scholar 

  • Eidelman, K., Gudkov, D., Segbefia, O., Ageev, E., Krivonosov, A., Matuhina, A.: Evolution of size distribution and structure of Si and SiO2 nanoparticles: laser-assisted formation and fragmentation. J. Phys: Conf. Ser. 917, 032027 (2017). https://doi.org/10.1088/1742-6596/917/3/032027

    Article  Google Scholar 

  • Fojtik, A., Henglein, A.: Laser ablation of films and suspended particles in a solvent: formation of cluster and colloid solutions. Berichte der Bunsen-Gesellschaft 97, 252–254 (1993)

    Google Scholar 

  • Gonzalez, C.M., Veinot, J.G.C.: Silicon nanocrystals for the development of sensing platforms. J. Mater. Chem. C. 4, 4836–4846 (2016)

    Article  Google Scholar 

  • Gu, L., Hall, D.J., Qin, Z., Anglin, E., Joo, J., Mooney, D.J., Howell, S.B., Sailor, M.J.: In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 4, 2326 (2013)

    Article  ADS  Google Scholar 

  • Her, T.-H., Finlay, R.J., Wu, C., Deliwala, S., Mazur, E.: Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 1673–1675 (1998)

    Article  ADS  Google Scholar 

  • Ishii, S., Sugavaneshwar, R.P., Chen, K., Dao, T.D., Nagao, T.: Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt. Mater. Express. 6, 640–648 (2016). https://doi.org/10.1364/OME.6.000640

    Article  ADS  Google Scholar 

  • Kabashin, A.V., Singh, A., Swihart, M.T., Zavestovskaya, I.N., Prasad, P.N.: Laser processed nanosilicon: a multifunctional nanomaterial for energy and health care. ACS Nano 13, 9841–9867 (2019)

    Article  Google Scholar 

  • Kovalev, D., Fujii, M.: Silicon nanocrystals: photosensitizers for oxygen molecules. Adv. Mater. 17, 2531–2544 (2005)

    Article  Google Scholar 

  • Krasnok, A.E., Maksymov, I.S., Denisyuk, A.I., Belov, P.A., Miroshnichenko, A.E., Simovski, C.R., Kivshar, Y.S.: Optical nanoantennas. Phys. Usp. 56, 539–564 (2013). https://doi.org/10.3367/UFNe.0183.201306a.0561

    Article  ADS  Google Scholar 

  • Krasnok, A.E., Maloshtan, A., Chigrin, D.N., Kivshar, Y.S., Belov, P.A.: Enhanced emission extraction and selective excitation of NV centers with all–dielectric nanoantennas. Laser Photon. Rev. 9, 385–391 (2015)

    Article  ADS  Google Scholar 

  • Lam, J., Lombard, J., Dujardin, C., Ledoux, G., Merabia, S., Amans, D.: Dynamical study of bubble expansion following laser ablation in liquids. Appl. Phys. Lett. 108, 74104 (2016)

    Article  Google Scholar 

  • Petriev, V.M., Tischenko, V.K., Mikhailovskaya, A.A., Popov, A.A., Tselikov, G., Zelepukin, I., Deyev, S.M., Kaprin, A.D., Ivanov, S., Timoshenko, V.Y.: others: Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188 Re radionuclide for cancer therapy. Sci. Rep. 9, 2017 (2019)

    Article  ADS  Google Scholar 

  • Priolo, F., Gregorkiewicz, T., Galli, M., Krauss, T.F.: Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 19–32 (2014). https://doi.org/10.1038/nnano.2013.271

    Article  ADS  Google Scholar 

  • Rasouli, H.R., Ghobadi, A., Ghobadi, T.G.U., Ates, H., Topalli, K., Okyay, A.K.: Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells. J. Opt. 19, 105902 (2017)

    Article  ADS  Google Scholar 

  • Rawat, R., Tiwari, A., Vendamani, V.S., Pathak, A.P., Rao, S.V., Tripathi, A.: Synthesis of Si/SiO2 nanoparticles using nanosecond laser ablation of silicate-rich garnet in water. Opt. Mater. (Amst) 75, 350–356 (2018)

    Article  ADS  Google Scholar 

  • Salonen, J., Kaukonen, A.M., Hirvonen, J., Lehto, V.-P.: Mesoporous silicon in drug delivery applications. J. Pharm. Sci. 97, 632–653 (2008)

    Article  Google Scholar 

  • Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    Article  Google Scholar 

  • Shelke, M.V., Gullapalli, H., Kalaga, K., Rodrigues, M.-T.F., Devarapalli, R.R., Vajtai, R., Ajayan, P.M.: Facile synthesis of 3D anode assembly with Si nanoparticles sealed in highly pure few layer graphene deposited on porous current collector for long life Li-ion battery. Adv. Mater. Interfaces 4, 1601043 (2017)

    Article  Google Scholar 

  • Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., Nakagiri, T.: Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 56, 2379–2380 (1990). https://doi.org/10.1063/1.102921

    Article  ADS  Google Scholar 

  • Tamarov, K.P., Osminkina, L.A., Zinovyev, S.V., Maximova, K.A., Kargina, J.V., Gongalsky, M.B., Ryabchikov, Y., Al-Kattan, A., Sviridov, A.P., Sentis, M., et al.: Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci. Rep. 4, 7034 (2014)

    Article  Google Scholar 

  • Thompson, C.S., Fleming, R.A., Zou, M.: Transparent self-cleaning and antifogging silica nanoparticle films. Sol. Energy Mater. Sol. Cells 115, 108–113 (2013)

    Article  Google Scholar 

  • Timoshenko, V.Y., Kudryavtsev, A.A., Osminkina, L., Vorontsov, A.S., Ryabchikov, Y.V., Belogorokhov, I.A., Kovalev, D., Kashkarov, P.K.: Silicon nanocrystals as photosensitizers of active oxygen for biomedical applications. JETP Lett. 83, 423–426 (2006)

    Article  Google Scholar 

  • Tsuji, T., Tsuboi, Y., Kitamura, N., Tsuji, M.: Microsecond-resolved imaging of laser ablation at solid–liquid interface: investigation of formation process of nano-size metal colloids. Appl. Surf. Sci. 229, 365–371 (2004)

    Article  ADS  Google Scholar 

  • Ulusoy Ghobadi, T.G., Ghobadi, A., Okyay, T., Topalli, K., Okyay, A.K.: Controlling luminescent silicon nanoparticle emission produced by nanosecond pulsed laser ablation: role of interface defect states and crystallinity phase. RSC Adv. 6, 112520–112526 (2016). https://doi.org/10.1039/C6RA24412B

    Article  ADS  Google Scholar 

  • Vaccaro, L., Sciortino, L., Messina, F., Buscarino, G., Agnello, S., Cannas, M.: Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water. Appl. Surf. Sci. 302, 62–65 (2014). https://doi.org/10.1016/j.apsusc.2014.01.041

    Article  ADS  Google Scholar 

  • Wippermann, S., He, Y., Vörös, M., Galli, G.: Novel silicon phases and nanostructures for solar energy conversion. Appl. Phys. Rev. 3, 040807 (2016). https://doi.org/10.1063/1.4961724

    Article  ADS  Google Scholar 

  • Wu, C., Crouch, C.H., Zhao, L., Mazur, E.: Visible luminescence from silicon surfaces microstructured in air. Appl. Phys. Lett. 81, 1999–2001 (2002)

    Article  ADS  Google Scholar 

  • Yan, J.H., Liu, P., Lin, Z.Y., Wang, H., Chen, H.J., Wang, C.X., Yang, G.W.: Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers. Nat. Commun. 6, 7042 (2015)

    Article  ADS  Google Scholar 

  • Zaza, C., Violi, I.L., Gargiulo, J., Chiarelli, G., Schumacher, L., Jakobi, J., Olmos-Trigo, J., Cortes, E., König, M., Barcikowski, S., et al.: Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance. ACS Photon. 6, 815–822 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The study is funded by a grant Russian Science Foundation (project № 19-79-10208). SEM studies were done on the base of the Interdisciplinary Resource Center for Nanotechnology, Research Park, St. Petersburg State University. Zeta-potential measurements were performed at the Center for Optical and Laser Materials Research, Research Park, St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Egorova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies.

Guest edited by Tigran Vartanyan, Vadim Veiko, Andrey Belikov and Eugene Avrutin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivonosov, A., Zuev, D., Kaputkina, S. et al. Evolution of size distribution of Si nanoparticles produced by pulsed laser ablation in water. Opt Quant Electron 52, 158 (2020). https://doi.org/10.1007/s11082-020-02274-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02274-z

Keywords

Navigation