Skip to main content
Log in

Complex envelope Faber polynomial method for the solution of Maxwell’s equations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A complex envelope approach for the numerical solution of Maxwell’s equations based on Faber polynomial expansions is investigated. The Faber polynomial expansion used for the approximation of the exponential time propagator offers a highly accurate and efficient calculation while allowing the application of large time steps. The complex envelope approach incorporates only the envelope around a carrier frequency. This is especially beneficial when bandlimited source field distributions are investigated as it is the case for many applications from terahertz technology or photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

    Article  MathSciNet  Google Scholar 

  • Borisov, A.G., Shabanov, S.V.: Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media. J. Comput. Phys. 216(1), 391–402 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Busch, K., Niegemann, J., Pototschnig, M., Tkeshelashvili, L.: A Krylov-subspace based solver for the linear and nonlinear Maxwell equations. Physica Status Solidi (b) 244(10), 3479–3496 (2007)

    Article  ADS  Google Scholar 

  • De Raedt, H., Michielsen, K., Kole, J., Figge, M.: Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm. IEEE Trans. Antennas Propag. 51(11), 3155–3160 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Ellacott S.:  A survey of Faber methods in numerical approximation. Comput. Math. Appl. 12(5-6), 1103–1107 (1986)

    Article  MathSciNet  Google Scholar 

  • Fahs, H.: Investigation on polynomial integrators for time-domain electromagnetics using a high-order discontinuous Galerkin method. Appl. Math. Model. 36(11), 5466–5481 (2012)

    Article  MathSciNet  Google Scholar 

  • Gedney, S.D., Zhao, B.: An auxiliary differential equation formulation for the complex-frequency shifted PML. IEEE Trans. Antennas Propag. 58(3), 838–847 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Helfert, S., Pregla, R.: A finite difference beam propagation algorithm based on generalized transmission line equations. Opt. Quantum Electron. 32(6–8), 681–690 (2000)

    Article  Google Scholar 

  • Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19(May), 209–286 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Huisinga, W., Pesce, L., Kosloff, R., Saalfrank, P.: Faber and Newton polynomial integrators for open-system density matrix propagation. J. Chem. Phys. 110(12), 5538–5547 (1999)

    Article  ADS  Google Scholar 

  • Kleene H., Schulz D.:Concept of a complex envelope faber polynomial approach for the solution of Maxwell’s equations. In: 2018 IEEE MTT-S Int. Conf. Numer. Electromagn. Multiphysics Model. Optim., IEEE, 6, pp 1–3 (2018a)

  • Kleene, H., Schulz, D.: On the evaluation of sources in highly accurate time domain simulations on the basis of faber polynomials. In: Progress in Electromagnetics Research Symposium (PIERS), p 2A03 (2018b)

  • Kleene, H., Schulz, D.: Time domain solution of Maxwell’s equations using Faber polynomials. IEEE Trans. Antennas Propag. 66(11), 6202–6208 (2018c)

    Article  ADS  MathSciNet  Google Scholar 

  • Ma, F.: Slowly varying envelope simulation of optical waves in time domain with transparent and absorbing boundary conditions. J. Light Technol. 15(10), 1974–1985 (1997)

    Article  ADS  Google Scholar 

  • Ma, C., Chen, Z.: Stability and numerical dispersion analysis of CE-FDTD method. IEEE Trans. Antennas Propag. 53(1), 332–338 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans. Microw. Theory Technol. 47(10), 2003–2007 (1999)

    Article  ADS  Google Scholar 

  • Novati, P.: Solving linear initial value problems by Faber polynomials. Numer. Linear Algebra Appl. 10(3), 247–270 (2003)

    Article  MathSciNet  Google Scholar 

  • Pursel, J., Goggans, P.: A finite-difference time-domain method for solving electromagnetic problems with bandpass-limited sources. IEEE Trans. Antennas Propag. 47(1), 9–15 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood (2005)

    MATH  Google Scholar 

  • Taflove, A., Oskooi, A., Johnson, S.G.: Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, 1st edn. Artech House, Norwood (2013)

    Google Scholar 

  • Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German research funding association Deutsche Forschungsgemeinschaft under Grant SCHU 1016/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Kleene.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleene, H., Schulz, D. Complex envelope Faber polynomial method for the solution of Maxwell’s equations. Opt Quant Electron 51, 381 (2019). https://doi.org/10.1007/s11082-019-2099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2099-y

Keywords

Navigation