Skip to main content
Log in

The Most Reliable and Precise Model to Determine Schottky Barrier Height and Photoelectron Yield Spectroscopy

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Schottky barrier height (SBH), \(\varphi\), plays a crucial role in the design of electronic and photo-electronic devices. In order to reckon SBH via internal photoemission (IPE), the technique is through extrapolating square root of IPE yield-and cube root of IPE yield-photon energy plots to zero before this work, this work was motivated by the most reliable and precise model to determine the SBH via IPE. A phenomenological model for connection IPE quantum yield and photon energy has been successfully established based on Fermi–Dirac distribution. The results of experimental observations fitted via the model indicate that the modeled quantum yield agrees well with experimental data. This model emphasizes the threshold of photon energy for calculating SBH, and the SBH of InN/GaN, p-type GaP/p-type Si, Pt/GaP, Au/GaAs, Si/SiO2 and Cu/SiO2 were obtained with high reliability after the method had been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afanas’ev, V.V., Stesmans, A.: Polytype determination at the SiC–SiO2 interface by internal electron photoemission scattering spectroscopy. Mater. Sci. Eng. B 102(1–3), 308–312 (2003)

    Article  Google Scholar 

  • Afanas’ev, V.V., Stesmans, A.: Internal photoemission at interfaces of high-κ insulators with semiconductors and metals. J. Appl. Phys. 102, 081301 (2007)

    Article  ADS  Google Scholar 

  • Afanas’ev, V.V., Stesmans, A., Brammertz, G., Delabie, A., Sionke, S., Mahony, A., Povey, I.M., Pemble, M.E., Connor, E., Hurley, P.K., Newcomb, S.B.: Band offsets at interfaces of (100)InxGa1−xAs (0 ≤ x ≺ 0.53) with Al2O3 and HfO2. Microelectron Eng 86(7–9), 1550–1553 (2009)

    Article  Google Scholar 

  • Afanasev, V.V., Badylevich, M., Houssa, M., Stesmans, A., Aggrawal, G., Campbell, S.A.: Electron energy band alignment at the NiO/SiO2 interface. Appl. Phys. Lett. 96, 172105 (2010)

    Article  ADS  Google Scholar 

  • Afanas’ev, V.V., Chou, H.Y., Stesmans, A., Merckling, C., Sun, X.: Band offsets at the (100) GaSb/Al2O3 interface from internal electron photoemission study. Microelectron. Eng. 88(7), 1050–1053 (2011)

    Article  Google Scholar 

  • Almeida, J., Dell’Orto, T., Coluzza, C., Margaritondo, G., Bergoss, O., SpajeT, M., Coujon, D.: Novel spectromicroscopy: Pt–GaP studies by spatially resolved internal photoemission with near-field optics. Appl. Phys. Lett. 69, 2361 (1996)

    Article  ADS  Google Scholar 

  • Aslan, B., Turan, B., Liu, H.C., Baribeau, J.M., Buchanan, M., Chow-Chong, P.: Double-barrier long wavelength SiGe/Si heterojunction internal photoemission infrared photodetectors. Appl. Phys. B 78, 225–228 (2004)

    Article  ADS  Google Scholar 

  • Aslan, B., Turan, R., Liu, H.C.: Study on the long wavelength SiGe/Si hetero-junction internal-photoemission infrared photodetectors. Infrared Phys. Technol. 47(1–2), 195–205 (2005)

    Article  ADS  Google Scholar 

  • Coluzza, C., Tuncel, E., Staehli, J.-L., Baudat, P.A., Margaritondo, G., McKinley, J.T., Barnes, A.A.V., Albridge, R.G., Tolk, N.H., Martin, D., Morier-Genoud, F., Dupuy, C., Rudra, A., Ilegems, M.: Interface measurements of hetero-junction band lineups with the Vanderbilt free-electron laser. Phys. Rev. B 46, 12834 (1992)

    Article  ADS  Google Scholar 

  • Falub, M.C., Shi, M., Krempasky, J., Hricovini, K., Mukovskii, Y.M., Neumann, M., Galakhov, V.R., Patthey, L.: Photonenergy dependent photoemission study of La0.7Sr0.3MnO3. Surf. Sci. 575(1–2), 29–34 (2005)

    Article  ADS  Google Scholar 

  • Felnhofer, D., Gusev, E.P., Jamison, P., Buchanan, D.A.: Charge trapping and detrapping in HfO2 high-κ MOS capacitors using internal photoemission. Microelectron. Eng. 80, 58–61 (2005)

    Article  Google Scholar 

  • Fowler, R.H.: The analysis of photoelectrical sensitivity curves for clean metals at various temperatures. Phys. Rev. 38, 45–56 (1931)

    Article  ADS  Google Scholar 

  • Heiblum, M., Nathan, M.I., Eizenberg, M.: Energy band discontinuities in hetero-junctions measured by internal photoemission. Surf. Sci. 174, 318–319 (1986)

    Article  ADS  Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics, 7th edn, pp. 216–218. Wiley (ASIA), Singapore (1996)

    Google Scholar 

  • Mahmood, Z.H.: Determination of InN–GaN heterostructure band offsets from internal photoemission measurements. Appl. Phys. Lett. 91(15), 152108–152111 (2007)

    Article  ADS  Google Scholar 

  • Okumura, T., Tu, K.N.: Electrical characterization of Schottky contacts of Au, Al, Gd, and Pt on n-type and p-type GaAs. J. Appl. Phys. 61, 2955 (1987)

    Article  ADS  Google Scholar 

  • Powell, R.J.: Interface barrier energy determination from voltage dependence of photoinjected currents. J. Appl. Phys. 41, 2424 (1970)

    Article  ADS  Google Scholar 

  • Sakata, I., Yamanaka, M., Kawanami, H.: Characterization of hetero-junctions in crystalline-silicon-based solar cells by internal photoemission. Sol. Energy Mater. Sol. Cells 93(6–7), 737–741 (2009)

    Article  Google Scholar 

  • Willisa, B.G., Langb, D.V.: Oxidation mechanism of ionic transport of copper in SiO2 dielectrics. Thin Solid Films 467, 284–293 (2004)

    Article  ADS  Google Scholar 

  • Wu, R., Schmidt, M., Schopke, A., Fuhs, W.: Solid-phase epitaxy of CaSi2 on Si(111) and the Schottky-barrier height of CaSi2/Si(111). Appl. Surf. Sci. 190, 437–440 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Changshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changshi, L. The Most Reliable and Precise Model to Determine Schottky Barrier Height and Photoelectron Yield Spectroscopy. Opt Quant Electron 51, 370 (2019). https://doi.org/10.1007/s11082-019-2088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2088-1

Keywords

Navigation