Skip to main content
Log in

Brain sensor and communication model using plasmonic microring antenna network

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the feasibility of using multi-plasmonic sensing probes embedded nanoring resonators within a microring resonator system for brain signal probing and the investigation proposed. The plasmonic sensor probes made of gold grating placed within the center nanorings, from which the sensor network of the coupling light from the multi-plasmonic probes to the main ring established. The coupling between light (photon) power and nano-gold grating generate the plasmonic polariton dipoles and propagate within the system. The whispering gallery mode generates at the center rings, which will couple into the sensor probes and the induced change in optical signals that can detect via the system ports. The coupling between the generated polaritons and external stimuli from the sub-brain cells will change the optical output signals, where the electro-optic signal conversion can be applied. In manipulation, the changes in the grating periods of the sensing probes will affect the changes in the output signals, which can distinguish by the sensing probe signal Bragg wavelengths. The optical filter applied at each of the device port to attenuate the output signal that can be applied for brain investigation. The simulation results have shown that the low output power can detect for sub-level investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali, J., Pornsuwancharoen, N., Youplao, P., Aziz, M., Amiri, I., Chaiwong, K., et al.: Coherent light squeezing states within a modified microring system. Results Phys. 9, 211–214 (2018a)

    Article  ADS  Google Scholar 

  • Ali, J., Pornsuwancharoen, N., Youplao, P., Amiri, I., Poznanski, R., Chaiwong, K., et al.: Characteristics of an on-chip polariton successively filtered circuit. Results Phys. 11, 410–413 (2018b)

    Article  ADS  Google Scholar 

  • Ali, J., Youplao, P., Chaiwong, K., Amiri, I., Punthawanunt, S., Pornsuwancharoen, N., et al.: Broadband photon squeezing control using microring embedded gold grating for LiFi-quantum link. SN Appl. Sci. 1, 482 (2019). https://doi.org/10.1007/s42452-019-0487-3

    Article  Google Scholar 

  • Amiri, A., Salehkalaibar, S., Maham, B.: Detection in neuronal communications with finite channel state. Nano Commun. Netw. 13, 60–69 (2017)

    Article  Google Scholar 

  • Amiri, I., Zakaria, R., Anwar, T., Bahadoran, M., Vigneswaran, D., Yupapin, P.: Dual wavelength optical duobinary modulation using GaAs–AlGaAs microring resonator. Results Phys. 11, 1087–1093 (2018a)

    Article  ADS  Google Scholar 

  • Amiri, I.S., Anwar, T., Zakaria, R., Yupapin, P.: TE-like mode analysis of microsystem InGaAsP/InP semiconductor resonator generating 20 GHz repetition rate pulse trains. Results Phys. 10, 980–986 (2018b)

    Article  ADS  Google Scholar 

  • Amiri, I.S., Ariannejad, M., Tajdidzadeh, M., Sorger, V.J., Ling, X., Yupapin, P.: Fast and slow light generated by surface plasmon wave and gold grating coupling effects. Indian J. Phys. 92, 789–798 (2018c)

    Article  ADS  Google Scholar 

  • Amiri, I.S., Ariannejad, M., Tiu, Z., Ooi, S., Aidit, S., Alizadeh, F., et al.: A widely tunable dual-wavelength based on a microring resonator filter device. Laser Phys. 28, 065101 (2018d)

    Article  ADS  Google Scholar 

  • Ariannejad, M., Amiri, I., Azzuhri, S., Zakaria, R., Yupapin, P.: Polarization dependence of SU-8 micro ring resonator. Results Phys. 11, 515–522 (2018a)

    Article  ADS  Google Scholar 

  • Ariannejad, M., Amiri, I.S., Ahmad, H., Yupapin, P.: A large free spectral range of 74.92 GHz in comb peaks generated by SU-8 polymer micro-ring resonators: simulation and experiment. Laser Phys. 28, 115002 (2018b)

    Article  ADS  Google Scholar 

  • Cubukcu, E., Kort, E.A., Crozier, K.B., Capasso, F.: Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006)

    Article  ADS  Google Scholar 

  • Habib, M., Gokbayrak, M., Ozbay, E., Caglayan, H.: Electrically controllable plasmon induced reflectance in hybrid metamaterials. Appl. Phys. Lett. 133(22), 221105 (2018)

    Article  Google Scholar 

  • Habib, M., Ozbay, E., Caglayan, H.: Tuning plasmon induced reflectance with hybrid metasurfaces. Photonics 6(1), 29 (2019). https://doi.org/10.3390/photonics6010029

    Article  Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Water-based terahertz metamaterial for skin cancer detection application. IEEE Sens. J. 19(4), 1519–1524 (2019a)

    Article  ADS  Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens. J. 19(13), 5161–5166 (2019b)

    Article  ADS  Google Scholar 

  • MacKay, D.: Neural communications: experiment and theory. Science 159, 335–353 (1968)

    Article  ADS  Google Scholar 

  • Miyazaki, J., Iida, T., Tanaka, S., Hayashi-Takagi, A., Kasai, H., Okabe, S., et al.: Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy. Biomed. Opt. Express 7, 1702–1710 (2016)

    Article  Google Scholar 

  • Pei, X., Hill, J., Schalk, G.: Silent communication: toward using brain signals. IEEE Pulse 3, 43–46 (2012)

    Google Scholar 

  • Pornsuwancharoen, N., Youplao, P., Chaiwong, K., Phatharacorn, P., Chiangga, S., Koledov, V., et al.: Manual control of optical tweezer switching for particle trapping and injection. Micro Nano Lett. 13, 911–914 (2018)

    Article  Google Scholar 

  • Poznanski, R., Cacha, L., Al-Wesabi, Y., Ali, J., Bahadoran, M., Yupapin, P., et al.: Solitonic conduction of electrotonic signals in neuronal Branchlets with polarized microstructure. Sci. Rep. 7, 2746 (2017). https://doi.org/10.1038/s41598-017-01849-3

    Article  ADS  Google Scholar 

  • Poznanski, R.R., Cacha, L.A., Latif, A.Z., Salleh, S.H., Ali, J., Yupapin, P., et al.: Molecular orbitals of delocalized electron clouds in neuronal domains. Biosystems 183, 103982 (2019)

    Article  Google Scholar 

  • Prabhu, A.M., Tsay, A., Han, Z., Van, V.: Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications. IEEE Photonics J. 2, 436–444 (2010)

    Article  ADS  Google Scholar 

  • Shukla, G.M., Punjabi, N., Kundu, T., Mukherji, S.: Optimization of plasmonic U-shaped optical fiber sensor for mercury ions detection using glucose capped silver nanoparticles. IEEE Sens. J. 19(9), 3224–3231 (2019)

    Article  ADS  Google Scholar 

  • Trehub, A.: The brain as a parallel coherent detector. Science 174, 722–723 (1971)

    Article  ADS  Google Scholar 

  • Tserevelakis, G.J., Vrouvaki, I., Siozos, P., Melessanaki, K., Hatzigiannakis, K., et al.: Photoacoustic imaging reveals hidden underdrawings in paintings. Sci. Rep. 7, Article number 747 (2017)

  • Tunsiri, S., Thammawongsa, N., Threepak, T., Mitatha, S., Yupapin, P.: Microring switching control using plasmonic ring resonator circuits for super-channel use. Plasmonics 1–9 (2019)

  • Vafapour, Z.: Near infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial. Opt. Commun. 387, 1–11 (2017)

    Article  ADS  Google Scholar 

  • Vafapour, Z.: Polarization-independent perfect optical metamaterial absorber as a glucose sensor in Food Industry applications. IEEE Trans. NanoBiosci. (2019). https://doi.org/10.1109/tnb.2019.2929802

    Article  Google Scholar 

  • Vafapour, Z., Ghahraloud, H.: Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial. J. Opt. Soc. Am. B 35(5), 1192–1199 (2018)

    Article  ADS  Google Scholar 

  • Yang, M., Liang, L., Zhang, Z., Xin, Y., Wei, D., Song, X., Zhang, H., Lu, Y.Y., Wang, M., Zhang, M., Wang, T., Yao, J.: Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells. Opt. Express 27(14), 19520–19529 (2019)

    Article  ADS  Google Scholar 

  • Youplao, P., Pornsuwancharoen, N., Amiri, I.S., Jalil, M.A., Aziz, M.S., Ali, J., et al.: Microring stereo sensor model using Kerr–Vernier effect for bio-cell sensor and communication. Nano Commun. Netw. 17, 30–35 (2018)

    Article  Google Scholar 

  • Yousif, B.B., Samra, A.S.: Optical responses of plasmonic gold nanoantennas through numerical simulation. J. Nanopart. Res. 15, 1341 (2013). https://doi.org/10.1007/s11051-012-1341-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to give the appreciation for the research financial support from Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preecha Yupapin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunruangses, M., Youplao, P., Amiri, I.S. et al. Brain sensor and communication model using plasmonic microring antenna network. Opt Quant Electron 51, 349 (2019). https://doi.org/10.1007/s11082-019-2074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2074-7

Keywords

Navigation