Skip to main content
Log in

Distributed MEMS Sensors Using Plasmonic Antenna Array Embedded Sagnac Interferometer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A micro Sagnac interferometer is proposed for electron cloud distributed sensors formed by an integrated (micro-electro-mechanical systems) MEMS resonator structure. The Sagnac interferometer consists of four microring probes integrated into a Sagnac loop. Each of the microring probes is embedded with the silver bars to form the plasmonic wave oscillation. The polarized light of 1.50 µm wavelength is input into the interferometer, which is polarized randomly into upstream and downstream directions. The polarization outputs can be controlled by the space–time input at the Sagnac port. Electrons are trapped and oscillated by the whispering gallery modes (WGMs), where the plasmonic antennas are established and applied for wireless fidelity (WiFi) and light fidelity (LiFi) sensing probes, respectively. Four antenna gains are 2.59 dB, 0.93 dB, 1.75 dB, and 1.16 dB, respectively. In manipulation, the sensing probe electron densities are changed by input source power variation. When the electron cloud is excited by the microscopic medium, the change in electron density is obtained and reflected to the required parameters. Such a system is a novel device that can be applied for brain-device interfering with the dual-mode sensing probes. The obtained WGM sensors are 1.35 µm−2, 0.90 µm−2, 0.97 µm−2, and 0.81 µm−2, respectively. The WGMs behave as a four-point probe for the electron cloud distributed sensors, where the electron cloud sensitivities of 2.31 prads−1mm3 (electrons)−1, 2.27 prads−1mm3 (electrons)−1, 2.22 prads−1mm3(electrons)−1, and 2.38 prads−1mm3(electrons)−1 are obtained, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Musa SMA, Baharin NF, Azmi AI, Ibrahim RKR, Abdullah AS, Noor MYM, Qi H (2018) Double-clad fiber Michelson interferometer for measurement of temperature and refractive index. Microw Opt Technol Lett 60(4):822–827

    Article  Google Scholar 

  2. Benleumli A, Boubekeur N, Massicotte D (2019) A highly sensitive substrate integrated waveguide interferometer applied to humidity sensing. IEEE Microwave Wirel Compon Lett 291:68–70

    Article  Google Scholar 

  3. Ruan J, Hu L, Lu H, Lu W, Zhu J, Xu H (2017) Temperature sensor employed TCF-PMF fiber structure- based Sagnac interferometer. IEEE Photon Technol Lett 29(16):1364–1366

    Article  CAS  Google Scholar 

  4. Liu Q, Liang X, Zhaoxia W, Lu C, Zerui Z, Jincheng Z (2020) High sensitivity photonic crystal fiber force sensor based on Sagnac interferometer for weighing. Opt Laser Technol 123:105939

    Article  CAS  Google Scholar 

  5. Chen W, Shuqin L, Liwen W, Hui Z, Wenliang L, Shuisheng J (2011) Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber. IEEE Photon Technol Lett 23(21):1639–1641

    Article  Google Scholar 

  6. Zu P, Chan CC, Jin Y, Gong T, Zhang Y, Chen LH, Dong X (2011) A temperature insensitive twist sensor by using low birefringence photonic crystal fiber based Sagnac interferometer. IEEE Photon Technol Lett 23(13):920–922

    Article  Google Scholar 

  7. Gong H, Haifeng S, Sulei Z, Yongxing J, Xinyong D (2014) Curvature sensor based on hollow core photonic crystal fiber Sagnac interferometer. IEEE Sens J 14(3):777–780

    Article  Google Scholar 

  8. Menon MV, Tong W, Li C, Xia F, Glesk I, Prucnal RP, Forrest RS (2003) All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer. IEEE Photon Technol Lett 15(2):254–256

    Article  Google Scholar 

  9. Suzuki M, Takahashi T, Aoyagi S, Amemiya Y, Fukuyama M, Yokayama S (2011) A study of Mach- Zehnder Interferometer type optical modulator applicable to an accelerometer. Jpn J Appl Phys 50:04DG14

    Article  Google Scholar 

  10. Porzi C, Falconi F, Ansalone L, Ghelfi P, Bogoni A (2021) Fast-reconfigurable microwave photonics phase shifter using silicon microring resonators. IEEE J Quantum Electron 87(1):1–19

    Article  Google Scholar 

  11. Mamdouh T, Khalil D (2005) A MEMS tunable optical ring resonator filter. Opt Quant Electron 37:835–853

    Article  Google Scholar 

  12. Liu T, Pagliano F, Veldhoven R-V, Pogoretskiy V, Jiao Y, Fiore A (2019) Low-voltage MEMS optical phase modulators and switches on a indium phosphide membrane on silicon. Appl Phys Lett 115(25):251104

    Article  Google Scholar 

  13. Garhwal A, Arumona AE, Ray K, Youplao P, Suwandee S, Yupapin P (2020) Microplasma source circuit using microring space-time distrotion control. IEEE Trans Plasma Sci 48(10):3600–3605

    Article  CAS  Google Scholar 

  14. Wan S, Niu R, Ren H-L, Zou C-L, Guo G-C, Dong C-D (2018) Experimental demonstration of dissipative sensing in a self-interference microring resonator. Photonics Res 6(7):681–685

    Article  CAS  Google Scholar 

  15. Hasanah L, Nugroho HS, Wulandari C, Mulyanti B, Berhanuddin DD, Haron MH, Menon S, Zain ARM, Hamidah I, Khairurrijal K, Mamat R (2020) Enhanced sensitivity of microring resonator-based sensors using finite difference time domain method to detect Glucose levels for diabetes monitoring. Appl Sci 10:4191

    Article  CAS  Google Scholar 

  16. Ho VWL, Chang Y, Liu Y, Zhang C, Li Y, Davidson RR, Little BE, Wang G, Chu ST (2020) Optical trapping and manipulating with a silica microring resonator in a self-locked scheme. Micromachines 11:202

    Article  Google Scholar 

  17. Abdolvand R, Bahreyni B, Lee E-YJ, Nabki F (2016) Micromachined resonators: a review. Micromachines 7:160

    Article  Google Scholar 

  18. Xu Y, Hu X, Kundu S, Nag A, Afsarimanesh N, Sapra S, Mukhopadhyay CS, Han T (2019) Silicon based sensors for biomedical applications: A review. Silicon 19:2908

    CAS  Google Scholar 

  19. Chellasivalingam M, Imran H, Pandit M, Boies MA, Seshia AA (2020) Weakly coupled piezoelectric MEMS resonators for aerosol sensing. Sensors 20:3162

    Article  CAS  Google Scholar 

  20. Tu X, Song C, Huang T, Chen Z, Fu H (2019) State of the art and perspectives on silicon photonic switches. Micromachines 10:51

    Article  Google Scholar 

  21. Garhwal A, Ray K, Arumona AE, Bharti GK, Amiri IS, Yupapin P (2020) Spin-wave generation using MZI embedded plasmonic antennas for quantum communications. Opt Quant Electron 52(241):1–12

    Google Scholar 

  22. Feng Z, He Y, Yan W, Yang F, Han W, Li Z (2020) Progress of waveguide ring resonator in Micro-optical gyroscopes. Photonics 7:96

    Article  CAS  Google Scholar 

  23. Arumona AE, Garhwal A, Youplao P, Amiri IS, Ray K, Punthawanunt S, Yupapin P (2020) Electron cloud spectroscopy using micro-ring Fabry-Perot sensor embedded gold grating. IEEE Sens J 20(18):10564–10571

    Article  CAS  Google Scholar 

  24. Zheng SN, Zou J, Cai H, Song FJ, Chin LK, Liu PY, Lin ZP, Dwong DL, Liu AQ (2019) Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat Commun 10:2349

    Article  CAS  Google Scholar 

  25. Yuan W, Yu C (2021) Dual demodulation of temperature and refractive index using ring core fiber based Mach-Zehnder Interferometer. Micromachines 12(3):258

    Article  Google Scholar 

  26. Yupapin PP, Sarapat N (2013) Novel micro-scale sensors using WGMS within the modified ass-drop filter circuits. Microw Opt Technol Lett 56(1):14–17

    Article  Google Scholar 

  27. Bunruangses M, Arumona AE, Youplao P, Pornsuwancharoen N, Ray K, Yupapin P (2020) Modeling of a superconducting sensor with microring- embedded gold-island space-time control. J Comput Electron 19:1678–1684

    Article  Google Scholar 

  28. Tuniz A, Bickerton O, Diaz JF, Kasebier T, Kley B-E, Kroker S, Palomba S, Sterke M (2020) Modular nonlinear hybrid plasmonic circuit. Nat Commun 11:2413

    Article  CAS  Google Scholar 

  29. Yao J, Leuenberger D, Lee MC-M, Wu CM (2007) Silicon microtoroidal resonators with integrated MEMS tunable coupler. IEEE J Sel Top Quantum Electron 13(2):202–208

    Article  CAS  Google Scholar 

  30. Mehdipoor M, Ghavifekr BH (2020) A novel microfluidics integrated biosensor based on a MEMS resonator. Microsyst Technol 26(181):3821–3828

    Article  Google Scholar 

  31. Du H, Chau SF, Zhou G (2016) Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators. Micromachines 7(69):1–24

    Google Scholar 

  32. Uranga A, Teva J, Verd J, Lopez JL, Torres F, Abadal G, Barniol N, Esteve J, Murano-PF (2006) CMOS integrated MEMS resonator for RF applications. IEEE Int Symp Circuits Syst Kos, Greece 2301–2304

  33. Youplao P, Pongwongtragull P, Mitatha S, Yupapin PP (2011) Crosstalk effects of quantum key distribution via a quantum router. Microw Opt Technol Lett 53(5):1094–1099

    Article  Google Scholar 

  34. Arumona AE, Amiri IS, Punthawanunt S, Ray K, Singh G, Bharati GK, Yupapin P (2020) 3D-quantum interferometer using silicon microring-embedded gold grating circuit. Microsc Res Tech 83(10):1217–1224

    CAS  PubMed  Google Scholar 

  35. Prateep P, Surasak C, Yupapin PP (2016) Analytical and simulation of a triple micro whispering gallery mode probe system for a 3D blood flow rate sensor. Appl Opt 55(33):9504–9513

    Article  Google Scholar 

  36. Babar S, Weaver JH (2015) Optical constants of Cu, Ag and Au revisited. Appl Opt 54(3):477–481

    Article  CAS  Google Scholar 

  37. Balanis CA (2005) Antenna theory analysis and design, 4th edn. Wiley, Hoboken, pp 1–1104

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research facilities from Ton Duc Thang University, Vietnam.

Author information

Authors and Affiliations

Authors

Contributions

Aanita Garhwal: simulation, analysis, writing original draft. Arumona Edward Arumona: Matlab results improvement, review and discussion. Phichai Youplao: validation, comparing Optiwave and Matlab results, visualization, and discussion. Kanad Ray: modeling, analysis, discussion, final editing. Preecha Yupapin: conceptualization, supervision, review, editing and submission. All authors have read through the manuscript.

Corresponding authors

Correspondence to Phichai Youplao or Kanad Ray.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors are agreed to participate in this article.

Consent for Publication

All authors are agreed to publish this article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garhwal, A., Arumona, A.E., Youplao, P. et al. Distributed MEMS Sensors Using Plasmonic Antenna Array Embedded Sagnac Interferometer. Plasmonics 17, 1119–1127 (2022). https://doi.org/10.1007/s11468-021-01577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01577-5

Keywords

Navigation