Skip to main content
Log in

Evanescent absorption based fluoride fiber sensing enhancement led by doped graphene’s thermo-optic dispersion in NIR

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Evanescent wave absorption based fiber optic sensor with fluoride core, doped silica clad, amorphous silicon layer, and graphene monolayer is studied in near infrared for highly sensitive and precise recognition of melanoma in liver tissues. The findings reveal that by carefully tuning the graphene’s dispersive behavior through doping and operating at slightly increased temperature (above room temperature) can lead to significantly high sensitivity and fine resolution. An optimum combination ‘1550 nm wavelength, 0.6 eV chemical potential (of graphene), and 311.1 K temperature’ leads to 112.211 mW/RIU sensitivity and 8.91 × 10−10 RIU resolution. An ultrathin silicon layer leads to better performance along with improved stability against possible oxidation and thermal issues. A detailed survey finds that the above performance (resolution, in particular) is largely superior than the fiber sensors based on different techniques. The proposed sensor can be amended accordingly for biomedical applications needing high precision of tissue/process monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aliofkhazraei, M., et al.: Graphene Science Handbook: Electrical and Optical Properties. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  • Amezcua-Correa, A., Yang, J., Finlayson, C.E., Peacock, A.C., Hayes, J.R., Sazio, P.J.A., Baumberg, J.J., Howdle, S.M.: Surface enhanced Raman scattering using microstructured optical fibre substrates. Adv. Funct. Mater. 17, 2024–2030 (2007)

    Article  Google Scholar 

  • Apriyanto, H., et al.: Comprehensive modeling of multimode fiber sensors for refractive index measurement and experimental validation. Sci. Rep. 8(1), 1–13 (2018)

    Article  ADS  Google Scholar 

  • Arregui, F.J., et al.: Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sens. Actuators B Chem. 232, 660–665 (2016)

    Article  Google Scholar 

  • Baranov, E.A., Khmel, S.Y., Zamchiy, A.O.: Synthesis of amorphous silicon films with high growth rate by gas-jet electron beam plasma chemical vapor deposition method. IEEE Trans. Plasma Sci. 42(10), 2794–2795 (2014)

    Article  ADS  Google Scholar 

  • Baumann, S., et al.: The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 44(3), 220–223 (1997)

    Article  Google Scholar 

  • Benito-Peña, E., et al.: Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal. Chim. Acta 943, 17–40 (2016)

    Article  Google Scholar 

  • Bixler, J.N., et al.: Assessment of tissue heating under tunable near-infrared radiation. J. Biomed. Opt. Lett. 19(7), 070501 (2014)

    Article  ADS  Google Scholar 

  • Ghahrizjani, R., et al.: A novel method for on line monitoring engine oil quality based on tapered optical fiber sensor (TOFS). IEEE Sens. J. 16(10), 3551–3555 (2016)

    Article  ADS  Google Scholar 

  • Ghatak, A., Thyagrajan, K.: Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  • Giannios, P., et al.: Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies. Sci. Rep. 6, 27910 (2016)

    Article  ADS  Google Scholar 

  • Gupta, B.D., Singh, C.D.: Fiber-optic evanescent field absorption sensor: a theoretical evaluation. Fiber Integr. Opt. 13(4), 433–443 (1994)

    Article  ADS  Google Scholar 

  • Hecht, E.: Fifth Edition Optics. Pearson, London (2017)

    Google Scholar 

  • Hossain, M.A., et al.: Optical fiber smartphone spectrometer. Opt. Lett. 41(10), 2237–2240 (2016)

    Article  ADS  Google Scholar 

  • Hu, T., et al.: Fiber optic SPR sensor for refractive index and temperature measurement based on MMF-FBG-MMF structure. Sens. Actuators B Chem. 237, 521–525 (2016)

    Article  Google Scholar 

  • Nedoma, J., et al.: Non-invasive fiber optic probe encapsulated into PolyDiMethylSiloxane for measuring respiratory and heart rate of the human body. Adv. Electr. Electron. Eng. 15(1), 93–100 (2017)

    Google Scholar 

  • Optical power meter kits, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4216. Last accessed on 11 Jan 2019

  • Paliwal, N., John, J.: Lossy mode resonance (LMR) based fiber optic sensors: a review. IEEE Sens. J. 15(10), 5361–5371 (2015)

    Article  ADS  Google Scholar 

  • Pierce, D.T., Spicer, W.E.: Electronic structure of amorphous Si from photoemission and optical studies. Phys. Rev. B 5(8), 3017–3029 (1972)

    Article  ADS  Google Scholar 

  • Qiu, H., et al.: Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Opt. Commun. 366, 275–281 (2016)

    Article  ADS  Google Scholar 

  • Renganathan, B., et al.: Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides. Sens. Actuators B Chem. 156(1), 263–270 (2011)

    Article  Google Scholar 

  • Ruddy, V.: An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber. Fiber Integr. Opt. 9(2), 143–151 (1990)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Gupta, J.: Fiber optic sensor’ s performance enhancement by tuning NIR wavelength, polarization, and 2D material. IEEE Photonics Technol. Lett. 30(12), 1087–1090 (2018)

    Article  ADS  Google Scholar 

  • Sharma, A.K., et al.: A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol. 43, 20–34 (2018)

    Article  ADS  Google Scholar 

  • Singh, S., Mishra, S.K., Gupta, B.D.: SPR based fibre optic biosensor for phenolic compounds using immobilization of tyrosinase in polyacrylamide gel. Sens. Actuators B 186, 388–395 (2013)

    Article  Google Scholar 

  • Singh, N., et al.: Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide. Opt. Lett. 41(24), 5776–5779 (2016)

    Article  ADS  Google Scholar 

  • Tao, G., et al.: Infrared fibers. Adv. Opt. Photonics 7, 379–458 (2015)

    Article  ADS  Google Scholar 

  • Tran, D.C., et al.: Heavy metal fluoride glasses and fibers: a review. J. Light. Technol. 2(5), 566–586 (1984)

    Article  ADS  Google Scholar 

  • Varghese, S., Swaminathan, S., Singh, K., Mittal, V.: Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3), 651–687 (2015)

    Article  Google Scholar 

  • Vollmer, F., Arnold, S.: Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5(7), 591–596 (2008)

    Article  Google Scholar 

  • Wang, X.D., Wolfbeis, O.S.: Fiber-optic chemical sensors and biosensors (2013–2015). Anal. Chem. 88(1), 203–227 (2015)

    Article  Google Scholar 

  • Xin, X., et al.: High-sensitivity four-layer polymer fiber-optic evanescent wave sensor. Biosens. Bioelectron. 91, 623–628 (2017)

    Article  Google Scholar 

  • Yanina, I.Y., Lazareva, E.N., Tuchin, V.V.: Refractive index of adipose tissue and lipid droplet measured in wide spectral and temperature ranges. Appl. Opt. 57(17), 4839–4848 (2018)

    Article  ADS  Google Scholar 

  • Zhong, N., et al.: A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor. Anal. Chem. 86(8), 3994–4001 (2014)

    Article  Google Scholar 

  • Zhong, N., Zhao, M., Zhong, L., Liao, Q., Zhu, X., Luo, B., Li, Y.: A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2. Biosens. Bioelectron. 85, 876–882 (2016)

    Article  Google Scholar 

  • Zhong, N., Chen, M., Chang, H., et al.: Optic fiber with Er3+:YAlO3/SiO2/TiO2 coating and polymer membrane for selective detection of phenol in water. Sens. Actuators B 273, 1744–1753 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Ishika Sharma acknowledges the MHRD (India) for financial support in form of Junior Research Fellowship (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.K., Sharma, I. Evanescent absorption based fluoride fiber sensing enhancement led by doped graphene’s thermo-optic dispersion in NIR. Opt Quant Electron 51, 152 (2019). https://doi.org/10.1007/s11082-019-1876-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1876-y

Keywords

Navigation