Skip to main content
Log in

Plasmonic Biosensor in NIR with Chalcogenide Glass Material: On the Role of Probe Geometry, Wavelength, and 2D Material

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Samarium doped chalcogenide core, perfluorinated polymer clad with Ag metal and plasmonic 2D materials based plasmonic fiber-optic sensor is simulated and analyzed in near-infrared (NIR) wavelength regime. Proposed sensor is directed at the detection of the malignancy stages of liver tissues. The performance analysis (in terms of figure-of-merit, i.e., FOM) was carried out taking into account the MoS2 and graphene monolayers as performance enhancing 2D materials. The analysis suggests that FOM values of MoS2-based sensor probe are better than graphene-based probe. Further, a comparative study shows that fiber-optic probe is able to provide much better performance than prism-based probes. The FOM gets better for longer wavelength. The specificity of the biosensor can be improved by employing a suitable buffer layer (1–15 nm) as a bio-recognition element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vaisocherová-Lísalová, H., et al. (2016). Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors & Bioelectronics, 80, 84–90. https://doi.org/10.1016/j.bios.2016.01.040.

    Article  Google Scholar 

  2. Wang, X. D., & Wolfbeis, O. S. (2016). Fiber-optic chemical sensors and biosensors (2013–2015). Analytical Chemistry, 88(1), 203–227. https://doi.org/10.1021/acs.analchem.5b04298.

    Article  Google Scholar 

  3. Nguyen, B. H., & Nguyen, V. H. (2016). Advances in graphene-based optoelectronics, plasmonics and photonics. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(1). https://doi.org/10.1088/2043-6262/7/1/013002.

    MathSciNet  Google Scholar 

  4. Sharma, A. K., Jha, R., & Gupta, B. D. (2007). Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. Sensors Journal, IEEE, 7(8), 1118–1129. https://doi.org/10.1109/JSEN.2007.897946.

    Article  Google Scholar 

  5. Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108(2), 462–493. https://doi.org/10.1021/cr068107d.

    Article  Google Scholar 

  6. Wang, Y., Meng, S., Liang, Y., Li, L., & Peng, W. (2013). Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement. Photonic Sensors, 3(3), 202–207. https://doi.org/10.1007/s13320-013-0119-2.

    Article  Google Scholar 

  7. Pollet, J., et al. (2009). Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosensors & Bioelectronics, 25(4), 864–869. https://doi.org/10.1016/j.bios.2009.08.045.

    Article  Google Scholar 

  8. Sharma, A. K., & Kaur, B. (2018). Chalcogenide fiber-optic SPR chemical sensor with MoS2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching. Optical Fiber Technology, 43(March), 163–168. https://doi.org/10.1016/j.yofte.2018.05.003.

    Article  Google Scholar 

  9. Kim, J. A., Hwang, T., Dugasani, S. R., Amin, R., Kulkarni, A., Park, S. H., et al. (2013). Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sensors and Actuators, B: Chemical, 187, 426–433. https://doi.org/10.1016/j.snb.2013.01.040.

    Article  Google Scholar 

  10. Patskovsky, S., Kabashin, A. V., Meunier, M., & Luong, J. H. T. (2003). Properties and sensing characteristics of surface-plasmon resonance in infrared light. Journal of the Optical Society of America. A, 20(8), 1644–1650. https://doi.org/10.1364/josaa.20.001644.

    Article  Google Scholar 

  11. Hecht, E. (2002). Optics (4th ed.). London: Pearson Education.

    Google Scholar 

  12. Isayev, A. I., Atayeva, S. U., Mehdiyeva, S. I., & Zeynalov, V. Z. (2014). Optical properties of chalcogenide glassy semiconductor Se95Te5 doped by samarium. FIZIKA, XX(3), 25–29.

    Google Scholar 

  13. Ishigure, T., Koike, Y., & Fleming, J. W. (2000). Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties. Journal of Lightwave Technology, 18(2), 178–184. https://doi.org/10.1109/50.822790.

    Article  Google Scholar 

  14. Djuris, A. B., Elazar, J. M., & Majewski, M. L. (1998). Optical properties of metallic films for vertical-cavity optoelectronic devices, 37(22), 5271–5283.

    Google Scholar 

  15. Giannios, P., Toutouzas, K. G., Matiatou, M., Stasinos, K., Konstadoulakis, M. M., Zografos, G. C., et al. (2016). Visible to near-infrared refractive properties of freshly-excised human-liver tissues: Marking hepatic malignancies. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep27910.

    Article  Google Scholar 

  16. Gupta, B. D., & Sharma, A. K. (2005). Sensitivity evaluation of a multi-layered surface plasmon resonance-based ber optic sensor: a theoretical study. Sensors and Actuators B: Chemical, 107, 40–46. https://doi.org/10.1016/j.snb.2004.08.030.

    Article  Google Scholar 

  17. Aćimović, S. S., et al. (2014). LSPR Chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Letters, 14, 2636–2641. https://doi.org/10.1021/nl500574n.

    Article  Google Scholar 

  18. Choi, J. W., et al. (2008). Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle-antibody complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313–314, 655–659. https://doi.org/10.1016/j.colsurfa.2007.05.057.

    Article  Google Scholar 

  19. Di Tommaso, L., & Roncalli, M. (2017). Tissue biomarkers in hepatocellular tumors: Which, when, and how. Frontiers in Medicine, 4, 1–7. https://doi.org/10.3389/fmed.2017.00010.

    Article  Google Scholar 

  20. Wang, C., Zhang, Y., Guo, K., Wang, N., Jin, H., Liu, Y., et al. (2016). Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. International Journal of Cancer, 138(8), 1824–1834. https://doi.org/10.1002/ijc.29723.

    Article  Google Scholar 

  21. Masson, L., Mazza, A., & Crescenzo, G. De. (2000). Determination of affinity and kinetic rate constants using surface plasmon resonance. Methods in Molecular Biology, 145, 189–201.

    Google Scholar 

  22. Beal, A. R., & Hughes, H. P. (1979). Kramers–Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. Journal of Physics C: Solid State Physics, 12(5), 881–890. https://doi.org/10.1088/0022-3719/12/5/017.

    Article  Google Scholar 

  23. Weber, J. W., Calado, V. E., & Van De Sanden, M. C. M. (2010). Optical constants of graphene measured by spectroscopic ellipsometry. Applied Physics Letters, 97(9), 0919041–0919043. https://doi.org/10.1063/1.3475393.

    Article  Google Scholar 

  24. Ignatyeva, D. O., Sekatskii, S. K., Khokhlov, N. E., Nur-E-Alam, M., Vasiliev, M., Alameh, K., & Belotelov, V. I. (2016). Enhancement of SPR-sensor sensitivity in garnet-based plasmonic heterostructures. In Proceedings of 2016 Progress in electromagnetics research symposium, PIERS 2016 (pp.831–835). https://doi.org/10.1109/piers.2016.7734494.

  25. Sharma, A. K., & Kaur, B. (2018). Simulation and analysis of 2D material (MoS2/MoSe2) based plasmonic sensor for measurement of organic compounds in infrared. Optik, 157, 161–169. https://doi.org/10.1016/j.ijleo.2017.11.067.

    Article  Google Scholar 

Download references

Acknowledgements

Baljinder Kaur acknowledges the MHRD (India) for support in form of research assistantship. This work is partially supported by the CSIR (India) project Grant no. 03(1441)/18/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Sharma, A.K. Plasmonic Biosensor in NIR with Chalcogenide Glass Material: On the Role of Probe Geometry, Wavelength, and 2D Material. Sens Imaging 19, 36 (2018). https://doi.org/10.1007/s11220-018-0220-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0220-0

Keywords

Navigation