Skip to main content
Log in

Design of refractive index sensing based on 2D PhC air-slot width-modulated line-defect microcavity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we propose an investigated sensor array based on two-dimensional photonic crystal air-slot width-modulated line-defect microcavity. This sensor consists of a waveguide coupled with microcavity. To achieve a high quality factor, we have tuned some parameters of the microcavity. The principle of sensing is based on the resonance wavelength shift when the refractive index is changed. For sensitivity analysis, we proposed various conventional designs (AD). We demonstrated that the design D has the highest sensitivity. An air-slot is created within the line-defect. The existence of the slots enhances the light-matter interactions. The simulation results are obtained by using finite-deference time-domain method. The sensitivity can achieve 400 nm/RIU, with detection limit of 2.98 × 10−5 RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams, M., Derose, G.A., Loncar, M., Scherer, A., Adams, M., Scherer, A.: Lithographically fabricated optical cavities for refractive index sensing. J. Vac. Sci. Technol. B 23, 3168–3173 (2005)

    Article  Google Scholar 

  • Aghababaeian, H., Vadjed-Samiei, M.-H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15, 398–402 (2011)

    Article  Google Scholar 

  • Arafa, S., Bouchemat, M., Bouchemat, T., Benmerkhi, A., Abdesselam, H.: Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection. Opt. Commun. 384, 93–100 (2017)

    Article  ADS  Google Scholar 

  • Bayindir, M., Temelkuran, B., Ozbay, E.: Photonic-crystal-based beam splitters. Appl. Phys. Lett. 77, 3902–3904 (2000)

    Article  ADS  Google Scholar 

  • Benelarbi, D., Bouchemat, T., Bouchemat, M.: Study of photonic crystal microcavities coupled with waveguide for biosensing applications. Opt. Quantum Electron. 49, 1–16 (2017)

    Article  Google Scholar 

  • Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Influence of elliptical shaped holes on the sensitivity and Q factor in 2D photonic crystals sensor. Photonics Nanostruct. Fundam. Appl. 20, 7–17 (2016)

    Article  ADS  Google Scholar 

  • Bougriou, F., Bouchemat, T., Bouchemat, M., Paraire, N.: Optofluidic sensor using two-dimensional photonic crystal waveguides. Eur. Phys. J. Appl. Phys. 62, 11201–11205 (2013)

    Article  ADS  Google Scholar 

  • Caër, C., Serna-Otálvaro, S.F., Zhang, W., Le Roux, X., Cassan, E.: Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration. Opt. Lett. 39, 5792–5794 (2014)

    Article  ADS  Google Scholar 

  • Chow, E., Grot, A., Mirkarimi, L.W., Sigalas, M., Girolami, G.: Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004)

    Article  ADS  Google Scholar 

  • Di Falco, A., Faolain, L.O., Krauss, T.F.: Photonic crystal slotted slab waveguides. Photonics Nanostruct. Fundam. Appl. 6, 38–41 (2008)

    Article  ADS  Google Scholar 

  • Dutta, H.S., Pal, S.: Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quantum Electron. 45, 907–917 (2013)

    Article  Google Scholar 

  • Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High-sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015)

    Article  Google Scholar 

  • Goyal, A.K., Dutta, H.S., Pal, S.: Recent advances and progress in photonic crystal-based gas sensors. J. Phys. D. Appl. Phys. 50, 1–24 (2017)

    Article  Google Scholar 

  • Guo, S., Albin, S.: Simple plane wave implementation for photonic crystal calculations. Opt. Express 11, 167–175 (2003)

    Article  ADS  Google Scholar 

  • Harhouz, A., Hocini, A.: Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. J. Electromagn. Waves Appl. 29, 659–667 (2015)

    Article  Google Scholar 

  • Hamed Mirsadeghi, S., Schelew, E., Young, J.F.: Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: high Q operation in solvent without undercutting. Appl. Phys. Lett. 102, 1–5 (2013)

    Article  Google Scholar 

  • Hocini, A., Harhouz, A.: Modeling and analysis of the temperature sensitivity in two- dimensional photonic crystal microcavity. J. Nanophotonics 10, 1–10 (2016)

    Article  Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  • Huang, L., Tian, H., Yang, D., Zhou, J., Liu, Q., Zhang, P.: Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Opt. Commun. 332, 42–49 (2014)

    Article  ADS  Google Scholar 

  • Huang, L., Tian, H., Zhou, J., Liu, Q., Zhang, P., Ji, Y.: Label-free optical sensor by designing a high-Q photonic crystal ring—slot structure. Opt. Commun. 335, 73–77 (2015)

    Article  ADS  Google Scholar 

  • Jágerská, J., Zhang, H., Diao, Z., Thomas, N.Le, Houdré, R.: Refractive index sensing with an air-slot photonic crystal nanocavity. Opt. Lett. 35, 2523–2525 (2010)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  • John, S., Toader, O., Busch, K.: Photonic band gap materials: a semiconductor for light. In: 4th Pacific Rim Conference on Lasers Electro-Optics, pp. 1–23 (2001)

  • Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1976)

    MATH  Google Scholar 

  • Lebbal, M.R., Boumaza, T., Bouchemat, M.: Structural study of the single-mode photonic crystal fiber. Optik 124, 4610–4613 (2013)

    Article  ADS  Google Scholar 

  • Levi, O., Lee, M.M., Zhang, J., Lousse, V., Brueck, S.R.J., Fan, S., Harris, J.S.: Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing. Proc. SPIE 6447, 1–9 (2007)

    Google Scholar 

  • Lončar, M., Scherer, A.: Optical Microcavities. World Scientific Publishing, California Institute of Technology, Pasadena (2004)

    Google Scholar 

  • Lončar, M., Nedeljković, D., Doll, T., Vučković, J., Scherer, A., Pearsall, T.P.: Waveguiding in planar photonic crystals. Appl. Phys. Lett. 77, 1937–1939 (2000)

    Article  ADS  Google Scholar 

  • Mehmet, B., Temelkuran, B., Ozbay, E.: Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals. Phys. Rev. B 61, 11855–11858 (2000)

    Article  ADS  Google Scholar 

  • Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)

    Article  ADS  Google Scholar 

  • Mortensen, N.A., Xiao, S., Pedersen, J.: Liquid-infiltrated photonic crystals : enhanced light-matter interactions for lab-on-a-chip applications. Microfluid. Nanofluid. 4, 117–127 (2008)

    Article  Google Scholar 

  • Noda, S., Yokoyama, M., Imada, M., Chutinan, A., Mochizuki, M.: Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001)

    Article  ADS  Google Scholar 

  • Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brien, J.D., Dapkus, P.D., Kim, I.: Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

    Article  Google Scholar 

  • Scullion, M.G., Di Falco, A., Krauss, T.F.: Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens. Bioelectron. 27, 101–105 (2011)

    Article  Google Scholar 

  • Sepúlveda, B., Calle, A., Lechuga, L.M., Armelles, G.: Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. 31, 1085–1087 (2006)

    Article  ADS  Google Scholar 

  • Shi, S., Chen, C., Prather, D.W.: Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs. Appl. Phys. Lett. 86, 1–3 (2005)

    Google Scholar 

  • Sun, F., Zhou, J., Huang, L., Fu, Z., Ding, Z., Tian, H.: Design on-chip width-modulated line-defect cavity array structure for multiplexing complex refractive index sensing. Sens. Actuators A Phys. 257, 8–14 (2017)

    Article  Google Scholar 

  • Wang, B., Dündar, M.A., NöTzel, R., Karouta, F., He, S., Van Der Heijden, R.W.: Photonic crystal slot nanobeam slow light waveguides for refractive index sensing. Appl. Phys. Lett. 97, 1–3 (2010)

    Google Scholar 

  • White, I.M., Oveys, H., Fan, X.: Liquid-core optical ring-resonator sensors. Opt. Lett. 31, 1319–1321 (2006)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yonekura, J., Ikeda, M., Baba, T.: Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method. J. Lightwave Technol. 17, 1500–1508 (1999)

    Article  ADS  Google Scholar 

  • Zhang, Y., Zhao, Y., Hu, H.: Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature. Sens. Actuators B Chem. 216, 563–571 (2015a)

    Article  Google Scholar 

  • Zhang, Y., Zhao, Y., Li, J.: Theoretical research on slow light engineering of slotted photonic crystal waveguides with elliptical holes and optofluidic infiltration. Appl. Opt. 54, 1639–1646 (2015b)

    Article  ADS  Google Scholar 

  • Zhang, W., Serna, S., Le Roux, X., Vivien, L., Cassan, E.: Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Opt. Lett. 41, 532–535 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayma Mosbah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosbah, C., Benmerkhi, A., Bouchemat, M. et al. Design of refractive index sensing based on 2D PhC air-slot width-modulated line-defect microcavity. Opt Quant Electron 51, 159 (2019). https://doi.org/10.1007/s11082-019-1871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1871-3

Keywords

Navigation