Skip to main content
Log in

High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose and investigate a D-shaped photonic fiber refractive index sensor with rectangular lattice based on surface plasmon resonance. In such sensor, the nanoscale gold metal film is deposited on the flat surface where it is side polished. Numerical results show that the average sensitivity of Au-metalized surface plasmon resonance (SPR) sensor could reach as high as 8,129 nm/refractive index unit (RIU) in the dynamic index range from 1.35 to 1.41 as well as 2,000 nm/RIU from 1.33 to 1.35. Compared to conventional Au-metalized SPR sensors, the performance of our device is obviously better, and the production process is greatly simplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shuai B, Xia L, Zhang Y, Liu D (2012) A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt Express 20(6):5974–5986

    Article  CAS  Google Scholar 

  2. Zhang Y, Xia L, Zhou C, Yu X, Liu H, Liu D, Zhang Y (2011) Microstructured fiber based plasmonic index sensor with optimized and accuracy calibration relation in large dynamic range. Opt Commun 284(18):4161–4166

    Article  CAS  Google Scholar 

  3. Zheng L, Zhang X, Ren X, Gao J, Shi L, Liu X, Wang Q, Huang Y (2011) Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers. Opt Laser Technol 43(5):960–964

    Article  CAS  Google Scholar 

  4. Hassani A, Skorobogatiy M (2009) Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J Opt Soc Am B 26(8):1550–1557

    Article  CAS  Google Scholar 

  5. Tan Z, Li X, Chen Y, Fan P (2013) Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber. Plasmonics 9(1):167–173

    Article  Google Scholar 

  6. Gao D, Guan C, Wen Y, Zhong X, Yuan L (2014) Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt Commun 313:194–98

    Google Scholar 

  7. Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808

    Article  CAS  Google Scholar 

  8. Shuai BB, Xia L, Liu DM (2012) Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt Express 20(23):25858–25866

    Article  Google Scholar 

  9. Guan CY, Yuan LB (2011) Surface plasmon resonance refractive index fiber sensor with hole-assisted structure. In: 21st international conference on optical fiber sensors, p 7753

  10. Shuai BB, Xia L, Liu DM (2011) Self-referencing and calibration microstructured optical fiber-based surface plasmon resonance sensor, Photonics Optoelectron Meet (Poem), 2011

  11. Zhang X, Wang R, Cox FM, Kuhlmey BT, Large M JC (2007) Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt Express 15(24):16270–16278

    Article  CAS  Google Scholar 

  12. Liao Y, Zhou C, Yao J-q, Jin W, Sampson DD, Yamauchi R, Chung Y, Nakamura K, Rao Y (2012) Photonic crystal fiber-based silver-nanowires LSPR sensors with supermodes. 842171-842171-4

  13. Jaroszewicz LR, Hao C, Lu Y, Wu B, Cui H, Duan L, Wang R, Yao J (2013) Plasmonic sensor based microstructured optical fibers with silver nanowires 8794(879406)

  14. Zhou C (2013) Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt Commun 288(42–46)

  15. Tian M, Lu P, Chen L, Lv C, Liu D (2012) All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt Commun 285(6):1550–1554

    Article  CAS  Google Scholar 

  16. Yu X, Zhang Y, Pan S, Shum P, Yan M, Leviatan Y, Li C (2010) A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt 12(1):015005

    Article  Google Scholar 

  17. Ditlbacher H, Galler N, Koller D, Hohenau A, Leitner A, Aussenegg F, Krenn J (2008) Coupling dielectric waveguide modes to surface plasmon polaritons. Opt Express 16(14):10455–10464

    Article  CAS  Google Scholar 

  18. Lee H, Schmidt M, Tyagi H, Sempere LP, Russell PSJ (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93(11):111102

    Article  Google Scholar 

  19. Blanc W, Mauroy V, Nguyen L, Shivakiran Bhaktha B, Sebbah P, Pal BP, Dussardier B (2011) Fabrication of rare earth-doped transparent glass ceramic optical fibers by modified chemical vapor deposition. J Am Ceram Soc 94(8):2315–2318

    Article  CAS  Google Scholar 

  20. Hunger D, Deutsch C, Barbour RJ, Warburton RJ, Reichel J (2012) Laser micro-fabrication of concave, low-roughness features in silica. AIP Adv 2(1):012119

    Article  Google Scholar 

  21. Xu L, Luo FF, Tan LS, Luo XG, Hong MH (2013) Hybrid plasmonic structures: design and fabrication by laser means. IEEE J Sel Topics Quant Electron 19(3):4600309–4600309

    Article  Google Scholar 

  22. Xu L, Tan LS, Hong MH (2011) Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing. Appl Opt 50(31):G74–G79

    Article  CAS  Google Scholar 

  23. Lim C, Hong M, Kumar AS, Rahman M, Liu X (2006) Fabrication of concave micro lens array using laser patterning and isotropic etching. Int J Mach Tools Manuf 46(5):552–558

    Article  Google Scholar 

  24. Vial A, Grimault AS, Macias D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8)

  25. Cennamo N, Massarotti D, Galatus R, Conte L, Zeni L (2013) Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber. Sensors 13(1):721–735

    Article  CAS  Google Scholar 

  26. Hassani A, Skorobogatiy M (2007) Design criteria for microstructured-optical-fiber based SPR sensor. J Opt Soc Am B 24:1423–1429

    Article  CAS  Google Scholar 

  27. Sharma AK, Gupta B (2006) Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films. Nanotechnology 17(1):124

    Article  CAS  Google Scholar 

  28. Homola J, Slavik R, Ctyroky J (1997) Interaction between fiber modes and surface plasmon waves: spectral properties. Opt Lett 22(18):1403–1405

    Article  CAS  Google Scholar 

  29. Slavik R, Homola J, Ctyroky J (1998) Miniaturization of fiber optic surface plasmon resonance sensor. Sens Actuators B 51(1):311–315

    Article  CAS  Google Scholar 

  30. Peng W, Banerji S, Kim Y-C, Booksh KS (2005) Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt Lett 30(22):2988–2990

    Article  Google Scholar 

  31. Zeng J, Liang D (2006) Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index. J Intell Mater Syst Struct 17(8-9):787–791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 61178026) and the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, G., Li, S., Qin, W. et al. High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film. Plasmonics 9, 1355–1360 (2014). https://doi.org/10.1007/s11468-014-9749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9749-5

Keywords

Navigation