Skip to main content
Log in

Reconfigurable metamaterial absorber as an optical switch based on organic-graphene control

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have suggested an effective optical switch with the cross fractal shape. It contains the main cross element that connected to four parasitic elements by four organic’s material junctions. This absorber is modified as a tunable element by using the graphene layer which can be considered for compensating the physical distortion. Each organic and parasitic load is placed over a graphene layer. These graphene layers separated with a SiO2 thin film. We have implemented a SiO2 layer as a spacer between the graphene and metal ground layer. The organic materials are popular for their various resistances value. We have applied a bulky dielectric slab with two different conductivity values for high and low resistance (HRS and LRS). This absorber works at the range of 90–100 THz for mid-infrared spectrum and the bandwidth of 4%. In the HRS mode the reflection value is about − 35 up to − 25 dB. When the organic material switched to LRS mode, this value drastically increased to − 5 dB. The designed absorber has both the tunable and switchable attributes. We have simulated this switch by the finite integral technique method with CST microwave studio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adato, R., Yanik, A.A., Altug, H.: On chip plasmonic monopole nano-antennas and circuits. Nano Lett. 11(12), 5219–5226 (2011)

    Article  ADS  Google Scholar 

  • Arezoomand, A.S., Zarrabi, F.B., Heydari, S., Gandji, N.P.: Independent polarization and multi-band THz absorber base on Jerusalem cross. Opt. Commun. 352, 121–126 (2015)

    Article  ADS  Google Scholar 

  • Azizi, S., Nouri-Novin, S., Seyedsharbaty, M.M., Zarrabi, F.B.: Early skin cancer detection sensor based on photonic band gap and graphene load at terahertz regime. Opt. Quantum Electron. 50(6), 230–235 (2018)

    Article  Google Scholar 

  • Bozano, L.D., Kean, B.W., Beinhoff, M., Carter, K.R., Rice, P.M., Campbell Scott, J.: Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles. Adv. Funct. Mater. 15(12), 1933–1939 (2005)

    Article  Google Scholar 

  • Cen, C., Chen, J., Liang, C., Huang, J., Chen, X., Tang, Y., Yi, Z., Xu, X., Yi, Y., Xiao, S.: Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Physica E. 103, 93–98 (2018)

    Article  ADS  Google Scholar 

  • Chen, J., Yi, Z., Xiao, S., Xibin, X.: Absorption enhancement in double-layer cross-shaped graphene arrays. Mater. Res. Express 5(1), 015605 (2018)

    Article  ADS  Google Scholar 

  • Cheng, Y., Yang, H., Cheng, Z., Nan, W.: Perfect metamaterial absorber based on a split-ring-cross resonator. Appl. Phys. A 102(1), 99–103 (2011)

    Article  ADS  Google Scholar 

  • Cheng, Y., Nie, Y., Gong, R.: Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators. Appl. Phys. B 111(3), 483–488 (2013)

    Article  ADS  Google Scholar 

  • Ebrahimi, S., Sabbaghi-Nadooshan, R., Tavakoli, M.B.: DNA implementation for optical waveguide as a switchable transmission line and memristor. Opt. Quantum Electron. 50(4), 196 (2018a)

    Article  Google Scholar 

  • Ebrahimi, S., Sabbaghi-Nadooshan, R., Tavakoli, M.B.: Optical Toffoli and Feynman reversible gates designing using DNA transmission lines. Opt. Quantum Electron. 50(8), 324 (2018b)

    Article  Google Scholar 

  • Hanson, G.W.: Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56(3), 747–757 (2008)

    Article  ADS  Google Scholar 

  • He, X.: Tunable terahertz graphene metamaterials. Carbon 82, 229–237 (2015)

    Article  Google Scholar 

  • Hibbins, A.P., Lockyear, M.J., Hooper, I.R., Roy Sambles, J.: Waveguide arrays as plasmonic metamaterials: transmission below cutoff. Phys. Rev. Lett. 96(7), 073904 (2006)

    Article  ADS  Google Scholar 

  • Hodzic, V., Hodzic, V., Newcomb, R.W.: Modeling of the electrical conductivity of DNA. IEEE Trans. Circuits Syst. I Regul. Pap. 54(11), 2360–2364 (2007)

    Article  Google Scholar 

  • Hosseinbeig, A., Pirooj, A., Zarrabi, F.B.: A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator. J. Magn. Magn. Mater. 423, 203–207 (2017)

    Article  ADS  Google Scholar 

  • Hu, F., Zou, T., Quan, B., Xinlong, X., Bo, S., Chen, T., Wang, L., Changzhi, G., Li, J.: Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt. Commun. 332, 321–326 (2014)

    Article  ADS  Google Scholar 

  • Ishida, S., Anno, Y., Takeuchi, M., Matsuoka, M., Takei, K., Arie, T., Akita, S.: Highly photosensitive graphene field-effect transistor with optical memory function. Sci. Rep. 5, 15491 (2015)

    Article  ADS  Google Scholar 

  • Jafari, F.S., Naderi, M., Hatami, A., Zarrabi, F.B.: Microwave Jerusalem cross absorber by metamaterial split ring resonator load to obtain polarization independence with Triple band application. AEU-Int. J. Electron. Commun. (2019)

  • Jahangiri, P., Zarrabi, F.B., Naser-Moghadasi, M., Arezoomand, A.S., Heydari, S.: Hollow plasmonic high Q-factor absorber for bio-sensing in mid-infrared application. Opt. Commun. 394, 80–85 (2017)

    Article  ADS  Google Scholar 

  • Kim, J.T., Choi, S.-Y.: Graphene-based plasmonic waveguides for photonic integrated circuits. Opt. Express 19(24), 24557–24562 (2011)

    Article  ADS  Google Scholar 

  • Kim, J., Yang, D.: AN ENG ZOR unit cell antenna using spiral inductors with enhanced bandwidth. Microw. Opt. Technol. Lett. 55(3), 567–571 (2013)

    Article  Google Scholar 

  • Lim, Z.X., Cheong, K.Y.: Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices. Phys. Chem. Chem. Phys. 17(40), 26833–26853 (2015)

    Article  Google Scholar 

  • Liu, Z., Boltasseva, A., Pedersen, R.H., Bakker, R., Kildishev, A.V., Drachev, V.P., Shalaev, V.M.: Plasmonic nanoantenna arrays for the visible. Metamaterials 2(1), 45–51 (2008)

    Article  ADS  Google Scholar 

  • Liu, L., Xia, S.-X., Luo, X., Zhai, X., Ya-Bin, Yu., Wang, L.-L.: Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide. Opt. Commun. 418, 27–31 (2018)

    Article  ADS  Google Scholar 

  • Meng, W.W., Lv, J., Zhang, L., Que, L., Zhou, Y., Jiang, Y.: An ultra-broadband and polarization-independent metamaterial absorber with bandwidth of 3.7 THz. Opt. Commun. 431, 255–260 (2019)

    Article  ADS  Google Scholar 

  • Nouri-Novin, S., Zarrabi, F.B., Eskandari, A.-R., Naser-Moghadasi, M.: Design of a plasmonic absorber based on the nonlinear arrangement of nanodisk for surface cloak. Opt. Commun. 420, 194–199 (2018)

    Article  ADS  Google Scholar 

  • Nouri-Novin, S., Sadatgol, M., Zarrabi, F.B., Bazgir, M.: A hollow rectangular plasmonic absorber for nano biosensing applications. Optik 176, 14–23 (2019)

    Article  ADS  Google Scholar 

  • Novin, S.N., Zarrabi, F.B., Bazgir, M., Heydari, S., Ebrahimi, S.: Field enhancement in metamaterial split ring resonator aperture nano-antenna with spherical nano-particle arrangement. Silicon 11, 293–300 (2018)

    Article  Google Scholar 

  • Oubre, C., Nordlander, P.: Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 108(46), 17740–17747 (2004)

    Article  Google Scholar 

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  • Palik, E.D. (ed.): Handbook of optical constants of solids, vol. 3. Academic Press, New York (1998)

    Google Scholar 

  • Pike, N.A., Stroud, D.: Plasmonic waves on a chain of metallic nanoparticles: effects of a liquid-crystalline host. JOSA B 30(5), 1127–1134 (2013)

    Article  ADS  Google Scholar 

  • Qi, Y., Sun, B., Guoqiang, F., Li, T., Zhu, S., Zheng, L., Mao, S., Kan, X., Lei, M., Chen, Y.: A nonvolatile organic resistive switching memory based on lotus leaves. Chem. Phys. 516, 168–174 (2019)

    Article  Google Scholar 

  • Qin, S., Dong, R., Yan, X., Qianqian, D.: A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron. 22, 147–153 (2015)

    Article  Google Scholar 

  • Ramanathan, R., Pearson, A., Walia, S., Kandjani, A.E., Mohammadtaheri, M., Bhaskaran, M., Sriram, S., Bhargava, S.K., Bansal, V.: Solution-processable do-it-yourself switching devices (DIY devices) based on CuTCNQ metal-organic semiconductors. Appl. Mater. Today 10, 12–17 (2018)

    Article  Google Scholar 

  • Ropers, C., Park, D.J., Stibenz, G., Steinmeyer, G., Kim, J., Kim, D.S., Lienau, C.: Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys. Rev. Lett. 94(11), 113901 (2005)

    Article  ADS  Google Scholar 

  • Sakurai, A., Zhao, B., Zhang, Z.M.: Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model. J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014)

    Article  ADS  Google Scholar 

  • Seyedsharbaty, M.M., Sadeghzadeh, R.A.: Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt. Quantum Electron. 49(6), 221 (2017)

    Article  Google Scholar 

  • Shin, D.-R., Kim, J., Park, C., Seong, W.: A dual-band RF switch using composite right/left-handed transmission lines and PIN diodes. Microw. Opt. Technol. Lett. 50(8), 2074–2077 (2008)

    Article  Google Scholar 

  • Simsek, E.: On the surface plasmon resonance modes of metal nanoparticle chains and arrays. Plasmonics 4(3), 223–230 (2009)

    Article  Google Scholar 

  • Sirmaci, Y.Denizhan, Akin, C.K., Sabah, C.: Fishnet based metamaterial loaded THz patch antenna. Opt. Quantum Electron. 48(2), 168 (2016)

    Article  Google Scholar 

  • Sun, B., Zhang, X., Zhou, G., Li, P., Zhang, Y., Wang, H., Xia, Y., Zhao, Y.: An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron. 42, 181–186 (2017)

    Article  Google Scholar 

  • Sun, B., Zhu, S., Mao, S., Zheng, P., Xia, Y., Yang, F., Lei, M., Zhao, Y.: From dead leaves to sustainable organic resistive switching memory. J. Colloid Interface Sci. 513, 774–778 (2018)

    Article  ADS  Google Scholar 

  • Trügler, A., Tinguely, J.-C., Jakopic, G., Hohenester, U., Krenn, J.R., Hohenau, A.: Near-field and SERS enhancement from rough plasmonic nanoparticles. Phys. Rev. B 89(16), 165409 (2014)

    Article  ADS  Google Scholar 

  • Wang, S., Kang, Z., Ben, X., Fan, L., Li, G., Wen, L., Xin, X., et al.: Wettability switchable metal-organic framework membranes for pervaporation of water/ethanol mixtures. Inorg. Chem. Commun. 82, 64–67 (2017)

    Article  Google Scholar 

  • Xiao, S., Wang, T., Liu, Y., Chen, X., Han, X., Yan, X.: Tunable light trapping and absorption enhancement with graphene ring arrays. Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016)

    Article  Google Scholar 

  • Yao, Yu., Kats, M.A., Shankar, R., Song, Y., Kong, J., Loncar, M., Capasso, F.: Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett. 14(1), 214–219 (2013)

    Article  ADS  Google Scholar 

  • Yarahmadi, M., Moravvej-Farshi, M.K., Yousefi, L.: Subwavelength graphene-based plasmonic THz switches and logic gates. IEEE Trans. Terahertz Sci. Technol. 5(5), 725–731 (2015)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B.: Sub wavelength plasmonic nano-antenna with H and U shape for enhancement of multi resonance. Optik 127(10), 4490–4494 (2016)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Mohaghegh, M., Bazgir, M., Arezoomand, A.S.: Graphene-Gold Nano-ring antenna for Dual-resonance optical application. Opt. Mater. 51, 98–103 (2016)

    Article  ADS  Google Scholar 

  • Zhang, Z., Xiaopeng, S., Fan, Y., Yin, P., Zhang, L., Shi, X.: Dynamically tunable Fano resonance in planar structures based on periodically asymmetric graphene nanodisk pair. Physica B 473, 7–10 (2015)

    Article  ADS  Google Scholar 

  • Zheng, G., Zou, X., Chen, Y., Linhua, X., Rao, W.: Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications. Opt. Mater. 66, 171–178 (2017)

    Article  ADS  Google Scholar 

  • Zhou, G., Sun, B., Zhou, A., Bo, W., Huang, H.: A larger nonvolatile bipolar resistive switching memory behaviour fabricated using eggshells. Curr. Appl. Phys. 17(2), 235–239 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Soheilifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soheilifar, M.R., Zarrabi, F.B. Reconfigurable metamaterial absorber as an optical switch based on organic-graphene control. Opt Quant Electron 51, 155 (2019). https://doi.org/10.1007/s11082-019-1869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1869-x

Keywords

Navigation