Skip to main content
Log in

A GaAs-based plasmonic source employing a nanoscale vertical cavity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new structure of a vertical cavity plasmonic source is presented. The structure, which is adopted from a metal–semiconductor–metal plasmonic photodetector, contains a gold substrate, n-type GaAs layer, active GaAs layer and p-type GaAs layer, respectively from bottom to up. A subwavelength aperture and metal gratings on both sides of the aperture are placed on the top of the device and act both as a gold clad and as the contact for applying DC bias. The metal gratings are improved by adding SiO2 between metal grooves and semiconductor. Applying voltage bias to p-and n-regions leads to photons generation in the active region. The generated photons in the active region excite a resonant surface plasmonic mode in the nanoscale cavity just below the aperture. One can use light outflowing from the nanoscale aperture, with wavelength of 882 nm, as a source to excite an arbitrary plasmonic guiding structure. The output beam has a suitable concentration so that in a 1000 nm distance from the aperture, still 37% of the power is concentrated in a width of 50 nm which is almost a unique specification among plasmonic sources, so far. The function of the device is validated using finite-difference time-domain numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babuty, A., Bousseksou, A., Tetienne, J.P., Doyen, I.M., Sirtori, C., Beaudoin, G., Sagnes, I., De Wilde, Y., Colombelli, R.: Semiconductor surface plasmon sources. Phys. Rev. Lett. 4(104), 226806 (2010)

    Article  ADS  Google Scholar 

  • Bhat, R.D.R., Panoiu, N.C., Brueck, S.R.J., Osgood, R.M.: Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating. Opt. Express 16(7), 4588–4596 (2008)

    Article  ADS  Google Scholar 

  • Briggs, M., Grandidier, J., Burgos, S.P., Feigenbaum, E., Atwater, H.A.: Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett. 10(12), 4851–4857 (2010)

    Article  ADS  Google Scholar 

  • Ding, K., Hill, M.T., Liu, Z.C., Yin, L.J., Veldhoven, P.J.V., Ning, C.Z.: Record performance of electrical injection sub-wavelength metallic cavity semiconductor lasers at room temperature. Opt. Express 21(4), 4728–4733 (2013)

    Article  ADS  Google Scholar 

  • Du, W., Wang, T., Chu, H.-S., Wu, L., Liu, R., Sun, S., Phua, W.K., Wang, L., Tomczak, N., Nijhuis, ChA: On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photon. 10, 274–280 (2016)

    Article  ADS  Google Scholar 

  • Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  • Farmani, A., Miri, M., Sheikhi, M.H.: Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photon. Technol. Lett. 30(2), 153–156 (2018a)

    Article  ADS  Google Scholar 

  • Farmani, A., Miri, M., Sharifpour, Zh: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos–Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018b)

    Article  ADS  Google Scholar 

  • Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)

    Article  ADS  Google Scholar 

  • Hetterich, J., Bastian, G., Gippius, N.A., Tikhodeev, S.G., Plessen, G.V., Lemme, U.: Optimized design of plasmonic MSM photodetector. IEEE J. Quantum Electron. 43(10), 855–859 (2007)

    Article  ADS  Google Scholar 

  • Hill, M.T., Marell, M., Leong, E.S.P., Smalbrugge, B., Zhu, Y., Sun, M., Veldhoven, P.J.V., Geluk, E.J., Karouta, F., Oei, Y.-S., Nötzel, R., Ning, C.-Z., Smit, M.K.: Lasing in metal insulator metal sub-wavelength plasmonic waveguides. Opt. Express 17(13), 11107–11112 (2009)

    Article  ADS  Google Scholar 

  • Jing, Y.L., Li, Z.F., Li, Q., Chen, X.S., Chen, P.P., Wang, H., Li, M.Y., Li, N., Lu, W.: Pixel-level plasmonic microcavity infrared photodetector. Sci. Rep. 6, 25849 (2016)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Koller, D.M., Hohenau, A., Ditlbacher, H., Galler, N., Reil, F., Aussenegg, F.R., Leitner, A., List, E.J.W., Krenn, J.R.: Organic plasmon-emitting diode. Nat. Photon. 2, 684–687 (2008)

    Article  ADS  Google Scholar 

  • Lezec, H.J., Thio, T.: Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 12(16), 3629–3651 (2004)

    Article  ADS  Google Scholar 

  • Li, J., Wei, H., Shen, H., Wang, Z., Zhao, Z., Duan, X., Xu, H.: Electrical source of surface plasmon polaritons based on hybrid Au–GaAs QW structures. Nanoscale 5, 8494–8499 (2013)

    Article  ADS  Google Scholar 

  • Liu, K., Li, N., Sadana, D.K., Sorger, V.J.: Integrated nano-cavity plasmon light-sources for on-chip optical interconnects. ACS Photon. 3(2), 233–242 (2016)

    Article  Google Scholar 

  • Ma, R.M., Oulton, R.F., Sorger, V.J., Bartal, G., Zhang, X.: Room temperature sub-diffraction limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011)

    Article  ADS  Google Scholar 

  • Matovic, J., Jaksic, Z.: Coupling of plasmon waveguide modes to free-space optics through surface sculping of ultrathin freestanding films. In: 16th telcommunication forume TELFOR, Serbia, pp. 551–554 (2008)

  • Nezhad, M.P., Simic, A., Bondarenko, O., Slutsky, B., Mizrahi, A., Feng, L., Lomakin, V., Fainman, Y.: Room temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010)

    Article  ADS  Google Scholar 

  • Offerhaus, H.L., Bergen, B.V.D., Escalante, M., Segerink, F.B., Korterik, J.P., Hulst, N.F.V.: Creating focused plasmons by noncollinear phase matching on functional gratings. Nano Lett. 5(11), 2144–2148 (2005)

    Article  ADS  Google Scholar 

  • Qui, S., Tobing, L.Y.M., Xu, Z., Tong, J., Ni, P., Zhang, D.-H.: Surface plasmon enhancement on infrared photodetection. Proc. Eng. 140, 152–158 (2016)

    Article  Google Scholar 

  • Shackleford, J.A., Grote, R., Currie, M., Spanier, J.E., Nabet, B.: Integrated plasmonic lens photodetector. Appl. Phys. Lett. 94(8), 083501 (2009)

    Article  ADS  Google Scholar 

  • Soole, J.B.D., Schumacher, H.: InGaAs metal–semiconductor–metal photodetectors for long wavelength optical communication. IEEE J. Quantum Electron. 27(3), 737–752 (1991)

    Article  ADS  Google Scholar 

  • Sorger, V.J., Zhang, X.: Spotlight on plasmon lasers. Science 333(6043), 709–710 (2011)

    Article  ADS  Google Scholar 

  • Tan, C.L., Lysak, V.V., Alameh, K., Lee, Y.T.: Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure. Opt. Commun. 283(9), 1763–1767 (2010)

    Article  ADS  Google Scholar 

  • Thio, T., Pellerin, K.M., Linke, R.A., Lezec, H.J., Ebbesen, T.W.: Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26(24), 1972–1974 (2001)

    Article  ADS  Google Scholar 

  • Walters, R.J., van Loon, R.V.A., Brunets, I., Schmitz, J., Polman, A.: A silicon-based electrical source of surface plasmon polaritons. Nat. Mater. 9, 21–25 (2009)

    Article  ADS  Google Scholar 

  • White, J.S., Veronis, G., Yu, Z., Barnard, E.S., Chandran, A., Fan, Sh, Brongersma, M.L.: Extraordinary optical absorption through subwavelength slits. Opt. Lett. 34(5), 686–688 (2009)

    Article  ADS  Google Scholar 

  • Yu, Z., Veronis, G., Fan, S., Brongersma, M.L.: Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures. Integr. Opt. Dev. Mater. Technol. XI 6475, 151116 (2007)

    Google Scholar 

  • Zheng, X., Chang, E., Shubin, I., Li, G., Luo, Y., Yao, J., Thacker, H., Lee, J.-H., Lexau, J., Liu, F., Amberg, P., Raj, K., Ho., R., Cunningham, J.E., Krishnamoorthy, A.V.: A 33 mW 100Gbps CMOS Silicon photonic WDM transmitter using off chip laser sources. In: Optical fiber communication conference, Anaheim, USA, pp. 1–3 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jamalpoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamalpoor, K., Zarifkar, A. & Alighanbari, A. A GaAs-based plasmonic source employing a nanoscale vertical cavity. Opt Quant Electron 51, 134 (2019). https://doi.org/10.1007/s11082-019-1857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1857-1

Keywords

Navigation