Skip to main content
Log in

Determining moisture content of Traditional Chinese Medicines using a near-infrared LED-based moisture content sensor with spectrum analysis

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In Traditional Chinese Medicine (TCM), moisture content (MC) inspection using voltage level or a lock-in amplifier, with a features-based near-infrared light-emitting diode sensor is possible. Abundant absorption response in a wide frequency range and information in both the time-domain and frequency-domain can be obtained, with the square excitation method. However, planeness, heterogeneous particle sizes, and measurement noise negatively affect the time-domain feature during MC inspection. In this work, spectrum analysis (SA) for feature extraction is investigated, to precisely measure the MC of Dutong pills. The principal components for low and high frequencies, are aimed at counteracting the dimensional methods, which are used for supplying the lower dimensional features. The SA experimental results demonstrate that the low frequency components, ranging from the base to the 3rd harmonic components, have a high linear correlation with the MC. The calibration and validation experimental results reveal that the MC can be a monotonic function about the SA amplitudes or first principal component (PC1), with the proposed sensor. This method has the potential to be used for gauging automatic, in situ MCs, particularly for quality control and Process Analytical Technology in TCM. Future research opportunities include improving accuracy and application of the method under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aichholzer, A., Schuberth, C., Mayer, H., Arthaber, H.: Microwave testing of moist and oven-dry wood to evaluate grain angle, density, moisture content and the dielectric constant of spruce from 8 GHz to 12 GHz. Eur. J. Wood Wood Prod. 76, 89–103 (2018)

    Article  Google Scholar 

  • Ayalew, G., Ward, S.M.: Development of a prototype infrared reflectance moisture meter for milled peat. Comput. Electron. Agric. 28, 1–14 (2000)

    Article  Google Scholar 

  • Büning-Pfaue, H.: Analysis of water in food by near infrared spectroscopy. Food Chem. 82, 107–115 (2003)

    Article  Google Scholar 

  • Baurecht, D., Fringeli, U.P.: Quantitative modulated excitation Fourier transform infrared spectroscopy. Rev. Sci. Instrum. 72, 3782–3792 (2001)

    Article  ADS  Google Scholar 

  • Beguš, S., Begeš, G., Drnovšek, J., Hudoklin, D.: A novel NIR laser-based sensor for measuring the surface moisture in polymers. Sens. Actuators A 221, 53–59 (2015)

    Article  Google Scholar 

  • Bowers, S., Hanks, R.: Reflection of radiant energy from soils. Soil Sci. 100, 130–138 (1965)

    Article  ADS  Google Scholar 

  • Cheung, F.: TCM: made in China. Nature 480, S82–S83 (2011)

    Article  ADS  Google Scholar 

  • Elena, C., Marisela, T., Jianni, X., Sucha, S., Johnson, D.E.: Interactions between Traditional Chinese Medicines and Western therapeutics. Curr. Opin. Drug Discov. Devel. 13, 50–65 (2010)

    Google Scholar 

  • Evett, S.: Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement. IAEA-TECDOC 1137, 5–51 (2000)

    Google Scholar 

  • Fortineau, J., Vander Meulen, F., Haumesser, L., Feuillard, G., Barre, S., Bou Matar, O.: Evaluation of the moisture content in phenolic resin via acoustic measurements. J. Appl. Phys. 100, 074911–074917 (2006)

    Article  ADS  Google Scholar 

  • Fortuna, J., Capson, D.: Improved support vector classification using PCA and ICA feature space modification. Pattern Recogn. 37, 1117–1129 (2004)

    Article  Google Scholar 

  • Forughi, A., Green, S., Stoeber, B.: Optical transparency of paper as a function of moisture content with applications to moisture measurement. Rev. Sci. Instrum. 87, 023706–023715 (2016)

    Article  ADS  Google Scholar 

  • Hu, Q., Calduch, R.M.: On Traditional Chinese Medicine regulation in China: how quality and safety of use are insured. Pharmacol. Res. 119, 371–372 (2017)

    Article  Google Scholar 

  • Li, P., Qi, L.W., Liu, E.H., Zhou, J.L., Wen, X.D.: Analysis of Chinese herbal medicines with holistic approaches and integrated evaluation models. TrAC Trends Anal. Chem. 27, 66–77 (2008)

    Article  Google Scholar 

  • Li, S., Zhang, Z.Q., Wu, L.J., Zhang, X.G., Li, Y.D., Wang, Y.Y.: Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst. Biol. 1, 51–60 (2007)

    Article  Google Scholar 

  • Li, W., Cheng, Z., Wang, Y., Qu, H.: Quality control of Lonicerae Japonicae Flos using near infrared spectroscopy and chemometrics. J. Pharm. Biomed. Anal. 72, 33–39 (2013)

    Article  Google Scholar 

  • Li, Y., Liu, B., Geng, S., Kim, S., Ye, J., Liu, X., Luan, L., Wu, Y., Chen, Y.: An approach combining real-time release testing with near-infrared spectroscopy to improve quality control efficiency of Rhizoma paridis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 157, 186–191 (2016)

    Article  ADS  Google Scholar 

  • Li, C., Guo, X., Ji, W., Wei, J., Qiu, X., Ma, W.: Etalon fringe removal of tunable diode laser multi-pass spectroscopy by wavelet transforms. Opt. Quant. Electron. 50, 275–286 (2018)

    Article  Google Scholar 

  • Liu, W., Baret, F., Gu, X., Zhang, B., Tong, Q., Zheng, L.: Evaluation of methods for soil surface moisture estimation from reflectance data. Int. J. Remote Sens. 24, 2069–2083 (2003)

    Article  ADS  Google Scholar 

  • Macias-Melo, E., Aguilar-Castro, K., Alvarez-Lemus, M., Flores-Prieto, J.: A method based on infrared detection for determining the moisture content of ceramic plaster materials. ISA Trans. 58, 667–673 (2015)

    Article  Google Scholar 

  • Medvedev, M.N., Gusev, V.N., Kirilenko, R.V.: Measurement of the moisture content of sand using an infrared moisture gauge. Glass Ceram. 41, 481–483 (1984)

    Article  Google Scholar 

  • Nie, P., Wu, D., Yang, Y., He, Y.: Fast determination of boiling time of yardlong bean using visible and near infrared spectroscopy and chemometrics. J. Food Eng. 109, 155–161 (2012)

    Article  Google Scholar 

  • Nie, P., Xia, Z., Sun, D.W., He, Y.: Application of visible and near infrared spectroscopy for rapid analysis of Chrysin and Galangin in Chinese propolis. Sensors 13, 10539–10549 (2013)

    Article  Google Scholar 

  • O’Mahony, M., Ward, S., Lynch, J.: A small-scale prototype peat harvester, using NIR moisture content sensing. Part 1: sensor development, calibration and utilization. J. Agric. Eng. Res. 70, 267–273 (1998)

    Article  Google Scholar 

  • Popova, M., Silici, S., Kaftanoglu, O., Bankova, V.: Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomed. Int. J. Phytother. Phytopharmacol. 12, 221–228 (2005)

    Google Scholar 

  • Qin, B., Li, Z., Luo, Z., Li, Y., Zhang, H.: Terahertz time-domain spectroscopy combined with PCA-CFSFDP applied for pesticide detection. Opt. Quant. Electron. 49, 244–256 (2017)

    Article  Google Scholar 

  • Qiu, X., Zhang, P., Wei, J., Cui, X., Wei, C., Liu, L.: Defect classification by pulsed eddy current technique in con-casting slabs based on spectrum analysis and wavelet decomposition. Sens. Actuators A 203, 272–281 (2013)

    Article  Google Scholar 

  • Rao, B.H., Singh, D.: Moisture content determination by TDR and capacitance techniques: a comparative study. Int. J. Earth Sci. Eng. 4, 132–137 (2011)

    Google Scholar 

  • Susha Lekshmi, S.U., Singh, D.N., Baghini, M.S.: A critical review of soil moisture measurement. Measurement 54, 92–105 (2014)

    Article  Google Scholar 

  • Song, X.Y., Ying-Dong, L.I., Shi, Y.P., Jin, L., Chen, J.: Quality control of traditional Chinese medicines: a review. Chin. J. Nat. Med. 11, 596–607 (2013)

    Article  Google Scholar 

  • Stafford, J.: Remote, non-contact and in situ measurement of soil moisture content: a review. J. Agric. Eng. Res. 41, 151–172 (1988)

    Article  Google Scholar 

  • Urakawa, A., Bürgi, T., Baiker, A.: Kinetic analysis using square-wave stimulation in modulation excitation spectroscopy: mixing property of a flow-through PM-IRRAS cell. Chem. Phys. 324, 653–658 (2006)

    Article  Google Scholar 

  • Wentao, Z., Junyang, N., Shan, T.: Study on identification methods in the detection of transgenic material based on terahertz time domain spectroscopy. Opt. Quant. Electron. 47, 3533–3543 (2015)

    Article  Google Scholar 

  • Xie, W.Q., Chai, X.S.: Rapid determination of moisture content in paper materials by multiple headspace extraction gas chromatography. J. Chromatogr. A 1443, 62–65 (2016)

    Article  Google Scholar 

  • Xin, N., Gu, X.F., Wu, H., Hu, Y.Z., Yang, Z.L.: Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests. Spectrochim Acta A Mol Biomol Spectrosc 89, 18–24 (2012)

    Article  ADS  Google Scholar 

  • Xin, T., Su, C., Lin, Y., Wang, S., Xu, Z., Song, J.: Precise species detection of traditional Chinese patent medicine by shotgun metagenomic sequencing. Phytomedicine 44, 204–211 (2018)

    Article  Google Scholar 

  • Yin, Z., Lei, T., Yan, Q., Chen, Z., Dong, Y.: A near-infrared reflectance sensor for soil surface moisture measurement. Comput. Electron. Agric. 99, 101–107 (2013)

    Article  Google Scholar 

  • Yong, J., David, B., Tu, P., Barbin, Y.: Recent analytical approaches in quality control of traditional Chinese medicines—a review. Anal. Chim. Acta 657, 9–18 (2010)

    Article  Google Scholar 

  • Zhang, T., Bai, G., Han, Y., Xu, J., Gong, S., Li, Y., Zhang, H., Liu, C.: The method of quality marker researchand quality evaluation of traditional Chinese medicine based on drug properties and effect characteristics. Phytomed. Int. J. Phytother. Phytopharmacol. 44, 204–211 (2018)

    Google Scholar 

  • Zhao, F., Bingxin, L., Mingyao, L., Meixia, Z., Zhenghui, Y., Chengping, W., Tieliu, S.: Evaluating the pharmacological mechanism of Chinese medicine Si-Wu-Tang through multi-level data integration. PLoS ONE 8, e72334–e724342 (2013)

    Article  Google Scholar 

  • Zhining, W., Zhijun, W., Steven, W., Ranadheer, R., Lun, Y., Jun, X., Charles, W., Zhong, Z., Chow, M.S.S., Leming, S.: Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PLoS ONE 6, e18278–e18282 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1610117, U1810129 and 11504256); Key Research and Development Program of Shanxi Province of China (Grant Nos. 201803D121090 and 201803D31077); the Open Funds of the Key Laboratory of Modern Preparation of TCM; Ministry of Education; Jiangxi University of Traditional Chinese Medicine, China; The first-class discipline in Jiangxi: Traditional Chinese pharmacology, China (JXSYLXK-ZHYAO003); Excellent Youth Academic Leader in Higher Education of Shanxi Province (2018), China; State Key Laboratory of Organic Geochemistry, GIGCAS (Grant No. SKLOG-201715); and the Fund for Shanxi “1331 Project” Key Innovative Research Team (1331KIRT), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanbing Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Z., Qiu, X., Guan, Y. et al. Determining moisture content of Traditional Chinese Medicines using a near-infrared LED-based moisture content sensor with spectrum analysis. Opt Quant Electron 51, 133 (2019). https://doi.org/10.1007/s11082-019-1848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1848-2

Keywords

Navigation