Skip to main content
Log in

Analytical study of exact traveling wave solutions for time-fractional nonlinear Schrödinger equations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The present paper deals with the time-fractional unstable nonlinear Schrödinger equation and the time fractional modified unstable nonlinear Schrödinger equation in the conformable context. For this aim, the modified Kudryashov method and the sine–Gordon expansion approach have been applied to retrieve a series of exact solutions for the previously mentioned equations. The potential of the schemes in producing exact traveling wave solutions of nonlinear conformable time-fractional equations is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  • Ahmed, N., Irshad, A., Mohyud-Din, S.T., Khan, U.: Exact solutions of perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity by improved \(\tan \left( {\phi \left( \xi \right)/2} \right)\)-expansion method. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-017-1314-y

  • Akbulut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math Appl. 75, 876–882 (2018)

    Article  MathSciNet  Google Scholar 

  • Biswas, A.: Soliton solutions of the perturbed resonant nonlinear dispersive Schrödinger’s equation with full nonlinearity by semi-inverse variational principle. Quantum Phys. Lett. 1(2), 79–84 (2012)

    Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Triki, H., Alshomrani, A.S., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Gerdjikov–Ivanov model by extended trial equation scheme. Optik 157, 1241–1248 (2018a)

    Article  ADS  Google Scholar 

  • Biswas, A., Jawad, A.J.M., Zhou, Q.: Resonant optical solutions with anti-cubic nonlinearity. Optik (2017). https://doi.org/10.1016/j.ijleo.2017.11.125

    Article  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A.S., Ullah, M.Z., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation for complex Ginzburg-Landau equation with modified simple equation method. Optik 158, 399–415 (2018b)

    Article  ADS  Google Scholar 

  • Darvishi, M.T., Ahmadian, S., Arbabi, S.B., Najafi, M.: Optical solitons for a family of nonlinear (1+1)-dimensional time–space fractional Schrödinger models. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-017-1304-0

    Article  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Manafian, J., Mirzazadeh, M.: The analytical study of solitons to the nonlinear Schrödinger equation with resonant nonlinearity. Optik (2016). http://dx.doi.org/10.1016/j.ijleo.2016.10.098

    Article  Google Scholar 

  • Eslami, M., Neirameh, A.: New exact solutions for higher order nonlinear Schrödinger equation in optical fibers. Opt. Quantum Electron. (2018) https://doi.org/10.1007/s11082-017-1310-2

    Article  Google Scholar 

  • Eslami, M., Mirzazadeh, M., Biswas, A.: Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time dependent coefficients by simplest equation approach. J. Mod. Opt. 60(19), 1627–1636 (2013)

    Article  ADS  Google Scholar 

  • Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Wave Random Complex Media (2017). http://dx.doi.org/10.1080/17455030.2017.1296983

    Article  MathSciNet  Google Scholar 

  • Hosseini, K., Kumar, D., Kaplan, M., Yazdani Bejarbaneh, E.: New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 68, 761–767 (2017)

    Article  ADS  Google Scholar 

  • Hosseini, K., Manafian, J., Samadani, F., Foroutan, M., Mirzazadeh, M., Zhou, Q.: Resonant optical solitons with perturbation terms and fractional temporal evaluation using improved \(\tan \left( {\varphi \left( \eta \right)/2} \right)\)-expansion method and exp function approach. Optik (2018). https://doi.org/10.1016/j.ijleo.2017.12.139

  • Ilie, M., Biazar, J., Ayati, Z.: General solution of Bernoulli and Riccati fractional differential equations based on conformable fractional derivative. Int. J. Appl. Math. Res. 6(2), 49–51 (2017a)

    Article  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Application of the Lie Symmetry Analysis for second-order fractional differential equations. Iran. J. Optim. 9(2), 79–83 (2017b)

    Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Resonant solitons to the nonlinear Schrödinger equation with different forms of nonlinearities. Optik 164, 201–209 (2018a). https://doi.org/10.1016/j.ijleo.2018.03.013

    Article  ADS  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Lie Symmetry Analysis for the solution of first-order linear and nonlinear fractional differential equations. Int. J. Appl. Math. Res. 7(2), 37–41 (2018b)

    Article  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Analytical solutions for conformable fractional Bratu-type equations. Int. J. Appl. Math. Res. 7(1), 15–19 (2018c)

    Article  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: General solution of second order fractional differential equations. Int. J. Appl. Math. Res. 7(2), 56–61 (2018d)

    Article  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Mellin transform and conformable fractional operator: applications. SeMA J. (2018e). https://doi.org/10.1007/s40324-018-0171-3

    Article  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Optimal homotopy asymptotic method for conformable fractional Volterra integral equations of the second kind. In: 49thAnnual Iranian Mathematics Conference, August 23–26 (2018f). ISC 97180-51902

  • Ilie, M., Navidi, M., Khoshkenar, A.: Analytical solutions for conformable fractional Volterra integral equations of the second kind. In: 49th Annual Iranian Mathematics Conference, August 23–26 (2018g). ISC 97180-51902

  • Ilie, M., Biazar, J., Ayati, Z.: The first integral method for solving some conformable fractional differential equations. Opt. Quantum Electron. 50(2) (2018h). https://doi.org/10.1007/s11082-017-1307-x

  • Ilie, M., Biazar, J., Ayati, Z.: Neumann method for solving conformable fractional Volterra integral equations. Comput. Methods Diff. Equ. (2018i)

  • Ilie, M., Biazar, J., Ayati, Z.: Optimal Homotopy Asymptotic Method for first-order conformable fractional differential equations. J. Fract. Calc. Appl. 10(1), 33–45 (2019a)

    MathSciNet  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Analytical solutions for second-order fractional differential equations via OHAM. J. Fract. Calc. Appl. 10(1), 105–119 (2019b)

    MathSciNet  Google Scholar 

  • Inc, M., Ates, E.: Bright, dark and singular optical solitons in a power law media with fourth order dispersion. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-017-1150-0

    Article  Google Scholar 

  • Inc, M., Yusufi, A., Aliyu, A.I: Dark optical and other soliton solutions for the three different nonlinear Schrödinger equations. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-017-1187-0

    Article  Google Scholar 

  • Inc, M., Yusufi, A., Aliyu, A.I., Baleanu, D.: Soliton structures to some time-fractional nonlinear differential equations with conformable derivative. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-017-1287-x

    Article  Google Scholar 

  • Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24, 1217–1231 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Polynomials in logistic function and solitary waves of nonlinear differential equations. Appl. Math. Comput. 219, 9245–9253 (2013)

    MathSciNet  MATH  Google Scholar 

  • Kumar, D., Darvishi, M.T., Joardar, A.K.: Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water. Opt. Quantum Electron. 50(3) (2018). https://doi.org/10.1007/s11082-018-1399-y

  • Li, Y.Q., Liu, W.J., Wong, P., Huang, L.G., Pan, N.: Dromion structures in the (2+1)-dimensional nonlinear Schrödinger equation with a parity-time-symmetric potential. Appl. Math. Lett. 47, 8–12 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Liu, W.J., Pang, L.H., Wong, P., Lei, M., Wei, Z.Y.: Dynamic solitons for the perturbed derivative nonlinear Schrödinger equation in nonlinear optics. Laser Phys. 25(6), 065401 (2015). https://doi.org/10.1088/1054-660X/25/6/065401

    Article  ADS  Google Scholar 

  • Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 81(1–2), 239–247 (2015)

    Article  ADS  Google Scholar 

  • Lu, D., Seadawy, A.R., Arshad, M.: Bright–dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-017-1294-y

    Article  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Fathi Vajargah, B., Biswas, A.: Optical solitons and optical rogons of generalized resonant dispersive nonlinear Schrödinger’s equation with power law nonlinearity. Optik 125(9), 4246–4256 (2014a)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Milovic, D., Biswas, A.: Topological solitons of resonant nonlinear Schrödinger’s equation with dual-power law nonlinearity using G′/G-expansion technique. Optik 125(19), 5480–5489 (2014b)

    Article  ADS  Google Scholar 

  • Triki, H., Biswas, A., Babatin, M.M., Zhou, Q.: Chirped dark solitons in optical metamaterials. Optik 158, 312–315 (2018)

    Article  ADS  Google Scholar 

  • Triki, H., Hayat, T., Aldossary, O.M., Biswas, A.: Bright and dark solitons for the resonant nonlinear Schrödinger’s equation with time- dependent coefficients. Opt. Laser Technol. 44, 2223–2231 (2012a)

    Article  ADS  Google Scholar 

  • Triki, H., Yildirim, A., Hayat, T., Aldossary, O.M., Biswas, A.: 1-soliton solution of the generalized resonant nonlinear dispersive Schrödinger’s equation with time-dependent coefficients. Adv. Sci. Lett. 16, 309–312 (2012b)

    Article  Google Scholar 

  • Wang, G.: Symmetry analysis and rogue wave solutions for the (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients. Appl. Math. Lett. 56, 56–64 (2016)

    Article  MathSciNet  Google Scholar 

  • Yin, J., Duan, X., Tian, L.: Optical secure communication modeled by the perturbed nonlinear Schrödinger equation. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-017-1111-7

    Article  Google Scholar 

  • Zhang, Z., Wu, J.: Generalized \(\left( {G'/G} \right)\)-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-016-0884-4

  • Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54(3), 903–917 (2017). https://doi.org/10.1007/s10092-017-0213-8

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubic–quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80(3), 1365–1371 (2015a)

    Article  Google Scholar 

  • Zhou, Q., Wei, C., Zhang, H., Lu, J., Yu, H., Yao, P., Zhu, Q.: Exact solutions to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions. In: Proceedings of the Romanian Academy, Series A, vol. 17, no. 4, pp. 307–313 (2016)

    MathSciNet  Google Scholar 

  • Zhou, H.W., Yang, S., Zhang, S.Q.: Conformable derivative approach to anomalous diffusion. Phys. A 491, 1001–1013 (2018)

    Article  MathSciNet  Google Scholar 

  • Zhou, Q., Zhu, Q.: Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Random Complex Media 25(1), 52–59 (2015)

    Article  ADS  Google Scholar 

  • Zhou, Q., Zhu, Q., Yu, H., Xiong, X.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80(1–2), 983–987 (2015b)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Biazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilie, M., Biazar, J. & Ayati, Z. Analytical study of exact traveling wave solutions for time-fractional nonlinear Schrödinger equations. Opt Quant Electron 50, 413 (2018). https://doi.org/10.1007/s11082-018-1682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1682-y

Keywords

Navigation