Skip to main content
Log in

Photonic crystal defective superconductor and black body radiations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present work, we have obtained a new design for sensing the black body radiation. In this work we designed one-dimensional photonic crystals incorporates that a high-temperature superconducting material as a defect layer. The numerical results are essentially obtained based on the fundamental characteristic matrix method. Also, the results show that the appearance of defect mode inside the photonic band gap. Moreover, the intensity of the defect mode could be tuned by the operating temperature as well as the black body temperature. The angle of incidence and the thickness of the superconductor are investigated. The present work could be potential use in many applications such as sensors for satellites thermal properties and spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akahane, Y., Asano, T., Song, B.-S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961), 944–947 (2003)

    Article  ADS  Google Scholar 

  • Aly, A.H.: Metallic and superconducting photonic crystal. J. Supercond. Nov. Magn. 21, 421–425 (2008)

    Article  Google Scholar 

  • Aly, A.H.: The transmittance of two types of one-dimensional periodic structures. Mater. Chem. Phys. 115, 391–394 (2009)

    Article  Google Scholar 

  • Aly, A.H.: Electromagnetic waves propagation characteristics in superconducting photonic crystals. In: Petrinm, A. (ed.) Handbook of Wave Propagation in Materials for Modern Applications, pp. 75–82. Sciyo, Rijeka (2011)

    Google Scholar 

  • Aly, A.H.: Superconductor-dielectric photonic band gap in ultraviolet radiation. Int. J. Adv. Appl. Phys. Res. (IJAAPR), Special Issue, 43-47 43,E-ISSN: 2408-977X/16 (2016)

  • Aly, A.H., Mohamed, D.: BSCCO/SrTiO3 One dimensional superconducting photonic crystal for many applications. J. Supercond. Nov. Magn. 18, 1699–1703 (2015)

    Article  Google Scholar 

  • Aly, A.H., Sayed, H.: Enhancement of the solar cell based on nanophotonic crystals. J. Nanophoton. 11(4), 046020 (2017)

    Article  ADS  Google Scholar 

  • Aly, A.H., Sayed, H.: Photonic band gap materials and monolayer solar cell. Surf. Rev. Lett. (2018). https://doi.org/10.1142/S0218625X18501032

    Article  Google Scholar 

  • Aly, A.H., Hsu, H.-T., Yang, T.-J., Wu, C.-J., Hwangbo, C.K.: Extraordinary optical properties of a superconducting periodic multilayer near zero permittivity operation range. J. Appl. Phys. 105, 083917 (2009)

    Article  ADS  Google Scholar 

  • Aly, A.H., El-Naggar, S.A., Elsayed, H.A.: The tunability of two dimensional n doped semiconductor photonic crystals based on Faraday Effect. Opt. Express 23(11), 15038–15046 (2015)

    Article  ADS  Google Scholar 

  • Aly, A.H., Mohamed, D., ElSayed, H.: Optical properties of new type of superconductor-semiconductor metamaterial photonic crystals. J. Supercond. Nov. Magn. (2018a). https://doi.org/10.1007/s10948-018-4628-ar

    Article  Google Scholar 

  • Aly, A.H., Ameen, A.A., Vigneswaran, D.: Superconductor nanometallic photonic crystals as a novel smart window for low-temperature applications. J. Supercond. Nov. Magn. (2018b). https://doi.org/10.1007/s10948-018-4716-6

    Article  Google Scholar 

  • Argyris, A., Hamacher, M., Chlouverakis, K.E., Bogris, A., Syvridis, D.: Photonic integrated device for chaos applications in communications. Phys. Rev. Lett. 100(19), 194101 (2008)

    Article  ADS  Google Scholar 

  • Bayindir, M., Temelkuran, B., Ozbay, E.: Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals. Phys. Rev. B 61(18), R11855–R11858 (2000)

    Article  ADS  Google Scholar 

  • Born, M., et al.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press, Cambridge; New York (1999)

    Book  Google Scholar 

  • Chang, Y.-H., Jhu, Y.-Y., Wu, C.-J.: Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 285(6), 1501–1504 (2012)

    Article  ADS  Google Scholar 

  • Cornelius, C.M., Dowling, J.P.: Modification of Planck blackbody radiation by photonic band-gap structures. Phys. Rev. A 59(6), 4736–4746 (1999)

    Article  ADS  Google Scholar 

  • Dai, D., Liu, L., Gao, S., Xu, D.-X., He, S.: Polarization management for silicon photonic integrated circuits. Laser Photon. Rev. 7(3), 303–328 (2013)

    Article  ADS  Google Scholar 

  • ElNaggar, S.A.: Tunable terahertz omnidirectional photonic gap in one dimensional graphene based photonic crystals. Opt. Quant. Electron. 47, 1627–1636 (2015)

    Article  Google Scholar 

  • Fleming, J.G., Lin, S.Y., El-Kady, I., Biswas, R., Ho, K.M.: All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417(6884), 52–55 (2002)

    Article  ADS  Google Scholar 

  • Gong, Q., Hu, X.: Photonic Crystals: Principles and Applications. Pan Stanford, Singapore (2014)

    Google Scholar 

  • Grigorchuk, N.I.: Sensitivity of surface plasmon resonances in spheroidal metal nanoparticles. Eur. Phys. J. B 87, 252 (2014)

    Article  ADS  Google Scholar 

  • Hung, H.-C., Wu, C.-J., Chang, S.-J.: A mid-infrared tunable filter in a semiconductor–dielectric photonic crystal containing doped semiconductor defect. Solid State Commun. 151(22), 1677–1680 (2011)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D.: Photonic crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • Li, Z.-Y.: Modified thermal radiation in three-dimensional photonic crystals. Phys Rev B 66(24), 241103 (2002)

    Article  ADS  Google Scholar 

  • Lin, S.Y., Moreno, J., Fleming, J.G.: Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl. Phys. Lett. 83(2), 380–382 (2003)

    Article  ADS  Google Scholar 

  • McNab, S.J., Moll, N., Vlasov, Y.A.: Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11(22), 2927–2939 (2003)

    Article  ADS  Google Scholar 

  • Nagarajan, R., et al.: Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quan. Electron. 11(1), 50–65 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C., Yokohama, I.: Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87(25), 253902 (2001)

    Article  ADS  Google Scholar 

  • Prather, D.W., et al.: High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide. Opt. Lett. 27(18), 1601–1603 (2002)

    Article  ADS  Google Scholar 

  • Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin, New York (2005)

    Google Scholar 

  • Wu, C.-J., Liao, J.-J., Chang, T.-W.: Tunable multilayer Fabry-Perot resonator using electro-optical defect layer. J. Electromagn. Waves Appl. 24(4), 531–542 (2010)

    Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arafa H. Aly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.H., Ameen, A.A., ElSayed, H.A. et al. Photonic crystal defective superconductor and black body radiations. Opt Quant Electron 50, 361 (2018). https://doi.org/10.1007/s11082-018-1632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1632-8

Keywords

Navigation