Skip to main content
Log in

Photoconductive antenna as local oscillator in terahertz frequency measurement: heterodyne efficiency and bias effect

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In a photoconductive antenna (PCA), femtosecond-laser-excited carriers will form a broadband terahertz photon-carrier (PC) comb, and the terahertz PC comb can be used as a multi-frequency local oscillator to carry out heterodyne detection of continuous terahertz sources with high frequency accuracy. In this paper, the heterodyne efficiency and the bias effects of a PCA terahertz PC comb are investigated. The results show that the pair beat signals (with the beat frequencies lower than the repetition frequency of femtosecond laser) of a continuous terahertz source and the two adjacent comb teeth do not decrease with the increase of beat frequency. Applying a bias voltage to the PCA can effectively enhance the terahertz emission efficiency. However, such a bias voltage has no positive effects on the heterodyne detection responsivity because the heterodyne detection is intrinsically based on the terahertz rectification effect that is proportional to the photo-excited electrons. In addition, by using a reference terahertz source with high frequency stability, it is possible to measure the fluctuation and the drift of the repetition frequency of femtosecond lasers with higher accuracy. The results are helpful for improving the performance of terahertz frequency measurement system based on PCA PC combs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://www.keysight.comN5242-90007.pdf. The relative frequency variations are ± 0.1 ppm/year and 0.1 ppm with temperature range from − 10 to 70 °C. The temperature variation is about 0.3 °C during the measurements, and the evaluated frequency variation is about 4.0 × 10−10. The frequency variation with time is much smaller than that with temperature, which is ignored in our experiments.

References

  • Barbieri, S., Gellie, P., Santarelli, G., Ding, L., Maineult, W., Sirtori, C., Colombelli, R., Beere, H., Ritchie, D.: Phase-locking of a 27-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nat. Photon. 4(9), 636–640 (2010)

    Article  ADS  Google Scholar 

  • Barbieri, S., Ravaro, M., Gellie, P., Santarelli, G., Manquest, C., Sirtori, C., Suraj, P., Linfield, E.H., Davies, A.G.: Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nat. Photon. 5(5), 306–313 (2011)

    Article  ADS  Google Scholar 

  • Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414–426 (2016)

    Article  Google Scholar 

  • Füser, H., Bieler, M.: Terahertz frequency combs. J. Infrared Millim. Terahertz Waves 35(8), 585–609 (2014)

    Article  Google Scholar 

  • Füser, H., Judaschke, R., Bieler, M.: High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser. Appl. Phys. Lett. 99(12), 121111 (2011)

    Article  ADS  Google Scholar 

  • Hsieh, Y.D., Iyonaga, Y., Sakaguchi, Y., Yokoyama, S., Inaba, H., Minoshima, K., Hindle, F., Araki, T., Yasui, T.: Spectrally interleaved comb-mode-resolved spectroscopy using swept dual terahertz combs. Sci. Rep. 4, 3816 (2014)

    Article  Google Scholar 

  • Jamshidifar, M., Bolivar, P.H.: Open-loop electrooptic sampling for real-time analysis and near-field imaging of ultrafast electronic devices. Opt. Quant. Electron. 49(5), 187 (2017)

    Article  Google Scholar 

  • Jepsen, P.U., Cooke, G.D., Koch, M.: Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photon. Rev. 5(1), 124–166 (2011)

    Article  ADS  Google Scholar 

  • Jirauschek, C., Tzenov, P.: Self-consistent simulations of quantum cascade laser structures for frequency comb generation. Opt. Quant. Electron. 49(12), 414 (2017)

    Article  Google Scholar 

  • Lee, Y.S.: Principles of Terahertz Science and Technology. Springer, Berlin (2009)

    Google Scholar 

  • Li, H., Laffaille, P., Gacemi, D., Apfel, M., Sirtori, C., Leonardon, J., Santarelli, G., Rosch, M., Scalari, G., Beck, M.: Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation. Opt. Expr. 23(26), 33270–33294 (2015)

    Article  ADS  Google Scholar 

  • Nagano, S., Ito, H., Kumagai, M., Kajita, M., Hanado, Y.: Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb. Opt. Lett. 38(12), 2137–2139 (2013)

    Article  ADS  Google Scholar 

  • Plusquellic, D.F., Diddams, S.A.: Mid-infrared coherent sources. Opt. Soc. Am. MT1C, 1 (2016)

    Google Scholar 

  • Rosch, M., Scalari, G., Beck, M., Faist, J.: Octave-spanning semiconductor laser. Nat. Photon. 9(1), 42–47 (2015)

    Article  ADS  Google Scholar 

  • Sirtori, C., Barbieri, S., Colombelli, R.: Wave engineering with THz quantum cascade lasers. Nat. Photon. 7(9), 691–701 (2013)

    Article  ADS  Google Scholar 

  • Sun, Q., Yang, Y., Meng, F., Deng, Y.Q.: High-presision measurement of terahertz frequency based on frequency comb. Acta Opt. Sin. 36, 0412002 (2016a)

    Article  Google Scholar 

  • Sun, Q., Yang, Y., Deng, Y.Q., Meng, F., Zhao, K.: High-presision measurement of terahertz frequency using an unstabilized femtosecond laser. Acta Phys. Sin. 65, 150601 (2016b)

    Google Scholar 

  • Wan, W.J., Wan, W.J., Li, H., Zhou, T., Cao, J.C.: Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation. Sci. Rep. 7, 44109 (2017)

    Article  ADS  Google Scholar 

  • Wang, G.Q., Wang, J.G., Li, X.Z., Wang, X.Z., Wang, X.F., Tong, C.J.: Frequency measurement of 0.14 THz high-power terahertz pulse. Acta Opt. Sin. 59, 8459–8464 (2010)

    Google Scholar 

  • Yang, Y., Sun, Q., Deng, Y.Q., Feng, M.Q., Zhao, K.: Study on beat signal with high signal-to-noise in terahertz frequency measurement. J. Lasers 44, 218–223 (2017). (in Chinese)

    Google Scholar 

  • Yasui, T.: Terahertz frequency metrology based on frequency comb techniques. Photon. Soc. Winter Top. Meet. Ser. IEEE 1, 22–23 (2010)

    Google Scholar 

  • Yasui, T., Yokoyama, S., Inaba, H., Minoshima, K., Nagatsuma, T., Araki, T.: Terahertz frequency metrology based on frequency comb. IEEE J. Sel. Top. Quant. Electron. 17(1), 191–201 (2001)

    Article  ADS  Google Scholar 

  • Yasui, T., Nose, M., Ihara, A., Kawamoto, K., Yokoyama, S., Inaba, H., Minoshima, K., Araki, T.: Fiber-based hybrid terahertz spectrometer using dual fiber combs. Opt. Lett. 35(10), 1689–1691 (2010)

    Article  ADS  Google Scholar 

  • Yasui, T., Ichikawa, R., Hsieh, Y.D., Hayashi, K., Cahyadi, H., Hindle, F., Sakaguchi, Y., Iwata, T., Mizutani, Y., Mizutani, Y., Yamamoto, K., Minoshima, K., Inaba, H.: Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci. Rep. 5, 10786 (2015)

    Article  ADS  Google Scholar 

  • Yokoyama, S., Nakamura, R., Nose, M., Araki, T., Yasui, T.: Terahertz spectrum analyzer based on a terahertz frequency comb. Opt. Expr. 16(17), 13052–13061 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like thank Dr. Qing Sun at National Institute of Metrology, China, for helpful discussion. This work is partly supported by the National Key Research and Development Program of China (2017YFA0701005, 2016YFC1202505), the Major National Development Project of Scientific Instrument and Equipment (2017YFF0106300, 2016YFF0100503), the National Natural Science Foundation of China (61731020, 61722111), the Young Yangtse Rive Scholar, and the Project of the Shanghai Science and Technology Committee (Grant No. 15DZ0500100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Shu, T., You, G. et al. Photoconductive antenna as local oscillator in terahertz frequency measurement: heterodyne efficiency and bias effect. Opt Quant Electron 50, 327 (2018). https://doi.org/10.1007/s11082-018-1577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1577-y

Keywords

Navigation