Skip to main content
Log in

Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper reports about a study of the local plasmonic resonance (LSPR) produced by metal nanoparticles embedded in a dielectric or semiconductor matrix. It is presented an analysis of the LSPR for different nanoparticle metals, shapes, and embedding media composition. Metals of interest for nanoparticle composition are Aluminum and Gold. Shapes of interest are nanospheres and nanotriangles. We study in this work the optical properties of metal nanoparticles diluted in water or embedded in amorphous silicon, ITO and ZnO as a function of size, aspect-ratio and metal type. Following the analysis based on the exact solution of the Mie theory and DDSCAT numerical simulations, it is presented a comparison with experimental measurements realized with arrays of metal nanospheres. Simulations are also compared with the LSPR produced by gold nanotriangles (Au NTs) that were chemically produced and characterized by microscope and optical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akimov, Y.A., Koh, W.S.: Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21(23), 235201–235207 (2010)

    Article  ADS  Google Scholar 

  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)

    Article  ADS  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles, pp. 130–154. Wiley, Hoboken (2008a)

    Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles, pp. 477–483. Wiley, Hoboken (2008b)

    Google Scholar 

  • Catchpole, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008a)

    Article  ADS  Google Scholar 

  • Catchpole, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008b)

    Article  ADS  Google Scholar 

  • Chen, X., Jia, B., Saha, J.K., Cai, B., Stokes, N., Qiao, Q., Gu, M.: Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett. 12(5), 2187–2192 (2012)

    Article  ADS  Google Scholar 

  • Fantoni, A., Lourenço, P., Pinho, P.: FDTD simulation of amorphous silicon waveguides for microphotonics applications. In: Integrated Optics: Physics and Simulations III. Vol. 10242. International Society for Optics and Photonics (2017)

  • Fantoni, A., Viera, M., Martins, R.: Influence of the intrinsic layer characteristics on a-Si: H p–i–n solar cell performance analysed by means of a computer simulation. Sol. Energy Mater. Sol. Cells 73(2), 151–162 (2002)

    Article  Google Scholar 

  • Fantoni, A., Fernandes, M., Vygranenko, Y., Louro, P., Vieira, M., Texeira, D., et al.: Simulation of localized surface plasmon in metallic nanoparticles embedded in amorphous silicon. In: Third International Conference on Applications of Optics and Photonics, vol. 10453, p. 104530D. International Society for Optics and Photonics (2017)

  • Ferlauto, A.S., Ferreira, G.M., Pearce, J.M., Wronski, C.R., Collins, R.W., Deng, X., Ganguly, G.: Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 92(5), 2424–2436 (2002)

    Article  ADS  Google Scholar 

  • Flatau, P.J., Draine, B.T.: Light scattering by hexagonal columns in the discrete dipole approximation. Opt. Express 22, 21834–21846 (2014)

    Article  ADS  Google Scholar 

  • Jang, J.: Preparation and properties of hydrogenated amorphous silicon thin-film transistors, thin film tansistors. In: Kagan C., Andry P. (eds.) Marcel Dekker (2003)

  • Ji, A., Sharma, R.P.: A study of nanoellipsoids for thin-film plasmonic solar cell applications. J. Phys. D Appl. Phys. 45(27), 275101–275108 (2012)

    Article  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications, pp. 65–87. Springer, Berlin (2007)

    Book  Google Scholar 

  • Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physic 330(3), 377–445 (1908)

    Article  ADS  MATH  Google Scholar 

  • Moulin, E., Sukmanowski, J., Schulte, M., Gordijn, A., Royer, F.X., Stiebig, H.: Thin-film silicon solar cells with integrated silver nanoparticles. Thin Solid Films 516(20), 6813–6817 (2008)

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids, vol. 3, pp. 275–358. Academic press, Cambridge (1998)

    Google Scholar 

  • Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105–093114 (2007)

    Article  ADS  Google Scholar 

  • Raja, W., Bozzola, A., Zilio, P., Miele, E., Panaro, S., Wang, H., Zaccaria, R.P.: Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells. Sci. Rep. 6, 2359–2370 (2016)

    Article  ADS  Google Scholar 

  • Scarabelli, L., Coronado-Puchau, M., Giner-Casares, J.J., Langer, J., Liz-Marzán, L.M.: Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8(6), 5833–5842 (2014)

    Article  Google Scholar 

  • Schropp, R.E., Carius, R., Beaucarne, G.: Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells. MRS Bull. 32(03), 219–224 (2007)

    Article  Google Scholar 

  • Takei, R.: Amorphous silicon photonics, crystalline and non-crystalline solids, Pietro Mandracci (ed.) InTech (2016)

  • Villesen, T.F., Uhrenfeldt, C., Johansen, B., Hansen, J.L., Ulriksen, H.U., Larsen, A.N.: Aluminum nanoparticles for plasmon-improved coupling of light into silicon. Nanotechnology 23(8), 085202 (2012)

    Article  ADS  Google Scholar 

  • Zhang, Y., Cai, B., Jia, B.: Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells. Nanomaterials 6(6), 95 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FCT (CTS multi annual funding) through the PIDDAC Program funds (UID/EEA/00066/2013) and by the IPL IDI&CA 2016 MANASE project. The friendly collaboration of Dr. Manuel João Mendes from CENIMAT-I3 N is gratefully acknowledged. Financial support from Fundação para a Ciência e a Tecnologia, FCT, is also gratefully acknowledged (research grants UID/BIO/04565/2013, Ph.D. Grant from BIOTECnico Program SFRH/BPD/111906/2015 to RP Oliveira-Silva). Funding received by IBB-Institute for Bioengineering and Biosciences from Programa Operacional Regional de Lisboa 2020 (Project No. 007317) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fantoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantoni, A., Fernandes, M., Vygranenko, Y. et al. Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applications. Opt Quant Electron 50, 246 (2018). https://doi.org/10.1007/s11082-018-1523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1523-z

Keywords

Navigation