Skip to main content
Log in

Experimental comparison of 28 Gb/s NRZ and EDB schemes for faster-than-Nyquist PON

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we experimentally demonstrate 28 Gb/s non-return-to-zero (NRZ) and electrical duo-binary (EDB) schemes over 25-km standard single-mode fiber transmission for faster-than-Nyquist passive optical network (FTN-PON). FTN signaling is a promising technology in the bandwidth-limited PON system. In order to improve the transmission performance, a combination of feed-forward equalization, post-filter and maximum likelihood sequence detection (FFE-MLSD) need to be employed for FTN-NRZ scheme, while only a simple 3-level FFE is needed for FTN-EDB scheme. The simulation results reveal that EDB scheme with 3-level FFE can transmit further fiber length compared with NRZ scheme at same receiver sensitivity. The experimental results show that EDB scheme achieves a power budget of 37.5 dB for 25-km fiber transmission with a pre-amplifier at the receiver, which is ~ 1.7 dB better than the best performance achieved by NRZ scheme. Meanwhile, the computational complexity of EDB scheme with 3-level FFE is 33.3\(\%\) lower than that of NRZ scheme based on FFE-MLSD. The EDB scheme with 3-level FFE shows the potential for the future FTN-PON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altabas, J.A., Arribas, P., Izquierdo, D., Sotelo, F., Lerin, A., Fabrega, J.M., Lazaro, J.A., Garces, I., Junyent, G.: Survey of faster-than-Nyquist for flexible passive optical networks. In: Transparent Optical Networks (ICTON) Paper Mo.D1.3, Hungary (2013)

  • Anderson, J.B., Rusek, F., wall, V.: Faster-than-Nyquist signaling. Proc. IEEE 101(8), 1817–1830 (2013)

    Article  Google Scholar 

  • Forney, G.: Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Trans. Inf. Theory 18(3), 363–378 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, M., Zhou, J., Tang, X., Qiao, Y.: \(4\times 25\)-Gb/s Duo-binary system over 20-km SSMF transmission with LMS algorithm. In: International Conference on Communications and Networking in China, Chongqing, pp. 412–422 (2016)

  • Houtsma, V., van Veen, D., Harstead, E.: Recent progress on standardization of next-generation 25, 50, and 100 G EPON. J. Lightwave Technol. 35(6), 1228–1234 (2017)

    Article  ADS  Google Scholar 

  • Li, J., Tipsuwannakul, E., Eriksson, T., Karlsson, M., Andrekson, P.A.: Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping. J. Lightwave Technol. 30(11), 1664–1676 (2012)

    Article  ADS  Google Scholar 

  • Liu, L., Li, L., Lu, Y.: Detection of 56 GB and PDM-QPSK generated by commercial CMOS DAC with 11 GHz analog bandwidth. In: Proceedings of European Conference Optical Communication Paper P. 3.6, Cannes (2014)

  • Man, J., Fu, S., Zhang, H., Gao, J., Zeng, L., Liu, X.: Downstream transmission of pre-distorted 25-Gb/s faster-than-Nyquist PON with 10 G-class optics achieving over 31 dB link budget without optical amplification. In: Proceedings of Optical Fiber Communications Conference Paper Th1I. 5, California (2016)

  • Mazo, J.: Faster-than-Nyquist signaling. Bell Syst. Technol. J. 54(8), 1451–1462 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Nesset, D.: PON roadmap. J. Opt. Commun. Netw. 9(1), A71–A76 (2017)

    Article  Google Scholar 

  • Tang, X., Zhou, J., Guo, M., Qi, J., Hu, F., Qiao, Y., Lu, Y.: 40-Gb/s PAM4 with low-complexity equalizers for next-generation PON systems. Opt. Fiber Technol. 40, 108–113 (2018)

    Article  ADS  Google Scholar 

  • van Veen, D.T., Houtsma, V.E.: High speed TDM-PON beyond 10 G. In: Proceedings of Optical Fiber Communication Conference Paper Tu3C.3, California (2016)

  • van Veen, D.T., Houtsma, V. E., Winzer, P., Vetter, P.: 26-Gbps PON transmission over 40-km using duobinary detection with a low cost 7-GHz APD-based receiver. In: Proceedings of European Conference on Optical Communication Paper Tu.3.B.1, Amsterdam (2012)

  • Wei, J., Grobe, K., Sanchez, C., Giacoumidis, E., Griesser, H.: Comparison of cost-and energy-efficient signal modulations for next generation passive optical networks. Opt. Exp. 23(22), 28271–28281 (2015)

    Article  ADS  Google Scholar 

  • Wei, J., Ingham, J., Cunningham, D., Penty, R., White, I.: Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications. J. Lightwave Technol. 30(20), 3273–3280 (2012)

    Article  ADS  Google Scholar 

  • Yi, L., Huang, L., Liu, J., Guo, C.: Timing phase synchronization for short-reach optical direct detected systems using Nyquist and FTN signaling. In: Asia Communications and Photonics Conference Paper AS3C. 4, Hong Kong (2016)

  • Zhong, K., Zhou, X., Gui, T., Tao, L., Gao, Y., Chen, W., Man, J., Zeng, L., Lau, A.P.T., Lu, C.: Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems. Opt. Exp. 23(2), 1176–1189 (2015)

    Article  ADS  Google Scholar 

  • Zhong, K., Zhou, X., Wang, Y., Gui, T., Yang, Y., Yuan, J., Wang, L., Chen, W., Zeng, L., Yu, C.: Recent advances in short reach systems. In: Proceedings of Optical Fiber Communication Conference Paper Tu.2.D.7, California (2017)

  • Zhou, J., Qiao, Y.: Low-peak-to-average power ratio and low-complexity asymmetrically clipped optical orthogonal frequency-division multiplexing uplink transmission scheme for long-reach passive optical network. Opt. Lett. 40(17), 4034–4037 (2015)

    Article  ADS  Google Scholar 

  • Zhou, J., Qiao, Y., Yang, Z., Cheng, Q., Wang, Q., Guo, M., Tang, X.: Capacity limit for faster-than-Nyquist non-orthogonal frequency-division multiplexing signaling. Sci. Rep. 7(1), 3380 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (61771062, 61331010); National Key Research and Development Program (2016YFB0800302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojun Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Tang, X., Zhou, J. et al. Experimental comparison of 28 Gb/s NRZ and EDB schemes for faster-than-Nyquist PON. Opt Quant Electron 50, 244 (2018). https://doi.org/10.1007/s11082-018-1500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1500-6

Keywords

Navigation