Skip to main content
Log in

Explicit, periodic and dispersive optical soliton solutions to the generalized nonlinear Schrödinger dynamical equation with higher order dispersion and cubic-quintic nonlinear terms

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, the nonlinear Schrödinger equation with higher order dispersion and nonlinear terms have been discussed analytically using extended Fan sub-equation method. The results hold numerous traveling wave solutions like optical, bright, dark, explicit, periodic and combined wave solutions with the aid of five parameters that are of key importance in elucidating some physical circumstance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  • Arshad, M., Seadawy, A.R., Dianchen, L.: Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications. Superlattices Microstruct. 112, 42–e434 (2017)

    Article  Google Scholar 

  • Biazar, J., Badpeima, F., Azimi, F.: Application of the homotopy perturbation method to Zakharov–Kuznetsov equations. Comput. Math. Appl. 58, 2391–2394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Darvishi, M.T., Najafi, M.: A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation. Chin. Phys. Lett. 28(4), 040202 (2011)

  • Darvishi, M., Najafi, M.: Some complexiton type solutions of the (3 + 1)-dimensional Jimbo–Miwa equation. Int. J. Math. Comput. Phys. Electron. Comput. Eng. 5, 1097–1099 (2011)

  • Darvishi, M.T., Najafi, M., Najafi, M.: Application of multiple exp-function method to obtain multi-soliton solutions of (2 + 1)-and (3 + 1)-dimensional breaking soliton equations. Am. J. Comput. Appl. Math. 1(2), 41–47 (2011)

    Article  Google Scholar 

  • Darvishi, M.T., Arbabi, S., Najafi, M., Wazwaz, A.M.: Traveling wave solution of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method. Opt. Int. J. Light Electr. Opt. 127(16), 6312–6321 (2016)

  • Darvishi, M.T., Najafi, M., Arbabi, S., Kavitha, L.: Exact propagating multi-anti-kink soliton solutions of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation. Nonlinear Dyn. 83, 1453–1462 (2016)

  • Dianchen, L., Seadawy, A.R., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017)

    Article  ADS  Google Scholar 

  • Dinarvand, S., Khosravi, S., Doosthoseini, A., Rashidi, M.M.: The homotopy analysis method for solving the Sawada–Kotera and Laxs fifth-order KdV equations. Adv. Theor. Appl. Mech. 1, 327–35 (2008)

    MATH  Google Scholar 

  • Dogan, K., El-Sayed Salah, M.: On the solution of the coupled Schrodinger KdV equation by the decomposition method. Phys. Lett. A 313, 82–88 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantam Electron. 49(12), 391 (2017)

  • Eslami, M., Rezazadeh, H., Rezazadeh, M., Mosavi, S.S.: Exact solutions to the space-time fractional Schrödinger-Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation. Opt. Quantum Electron. 49(8), 279 (2017)

  • Gear, J.A.: Strong interactions between solitary waves belonging to different wave modes. Stud. Appl. Math. 72, 95–124 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Helal, M.A., Seadawy, A.R., Ibrahim, R.S.: Variational principle for ZakharovShabat equations in two-dimensions. Appl. Math. Comput. 219, 5635–5648 (2013)

    MathSciNet  MATH  Google Scholar 

  • Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  • Kara, A.H., Khalique, C.M.: Nonlinear evolution-type equations and their exact solutions using inverse variational methods. J. Phys. A: Math. Gen. 38, 4629–4636 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Khalique, C.M., Adem, K.R.: Exact solutions of the (2+1)-dimensional Zakharov–Kuznetsov modified equal width equation using Lie group analysis. Math. Comput. Modell. 54, 184–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Khani, F., Darvishi, M.T., Farmani, A., Kavitha, L.: New exact solutions of coupled (2+1)-dimensional nonlinear system of Schrodinger equations. ANZIAM J. 52, 110–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kichenassamy, S., Olver, P.: Existence and nonexistence of solitary wave solutions to higher-order model evolution equations. SIAM J. Math. Anal. 23(5), 1141–1166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Najafi, M., Najafi, M., Darvishi, M.T.: New exact solutions to the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation: Modification of extended homoclinic test approach. Chin. Phys. Lett. 29(4), 040202 (2012)

    Article  Google Scholar 

  • Neirameh, A.: Topological soliton solutions to the coupled Schrodinger–Boussinesq equation by the SEM. Opt. Int. J. Light Electron Opt. 126(23), 4179–4183 (2015)

    Article  Google Scholar 

  • Neirameh, A.: Exact solutions of the generalized Sinh–Gordon equation. Comput. Math. Math. Phys. 56(7), 1336–1342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Rizvi, S.T.R., Ali, I., Ali, K., Younis, M.: Saturation of the nonlinear refractive index for optical solitons intwo-core fibers. Optik 127, 5328–5333 (2016)

    Article  ADS  Google Scholar 

  • Saha, M., Sarma, A.K.: Solitary wave solutions and modulations instability analysis of the nonlinear Schrödinger equation with higher order dispersion and nonlinear terms. Commun. Nonlinear Sci. Numer. Simul. 18, 2420–2425 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Seadawy, A.R.: Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67(1), 172–180 (2014)

  • Seadawy, A.R.: Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasm. 21(5), 052107 (2014)

  • Seadawy, A.R.: Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. Comput. Math. Appl. 71, 201–212 (2016)

  • Seadawy, A.R.: Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries–Zakharov–Kuznetsov equation in a magnetized electron-positron plasma. Phys. A 455, 44–51 (2016)

  • Seadawy, A.R., El-Rashidy, K.: Traveling wave solutions for some coupled nonlinear evolution equations. Math. Comput. Modell. 57, 1371–1379 (2013)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Results Phys. 7, 43–48 (2017)

    Article  Google Scholar 

  • Seadawy, A.R., El-Kalaawy, O.H., Aldenari, R.B.: Water wave solutions of Zufirias higher-order Boussinesq type equations and its stability. Appl. Math. Comput. 280, 57–71 (2016)

    MathSciNet  Google Scholar 

  • Seadawy, A.R., Arshad, M., Lu, D.: Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov–Kuznetsov systems. Eur. Phys. J. Plus 132, 162 (2017)

    Article  Google Scholar 

  • Sheng, Z., Jing-Lin, T., Wei, W.: Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations. Comput. Math. Appl. 58, 2294–9 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Shukla, P.K., Kourakis, I.: Modulated wave packets associated with longitudinal dust grain oscillations in a dusty plasma crystals. Phys. Plasm. 11(4), 1384–1393 (2004)

    Article  ADS  Google Scholar 

  • Sirendaoreji, S.J.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309, 387–396 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tariq, K.U., Seadawy, A.R.: Bistable bright-dark solitary wave solutions of the (3+1)-dimensional breaking soliton, Boussinesq equation with dual dispersion and Modi ed KdV-KP equations and their applications. Results Phys. 7, 1143–1149 (2017)

    Article  ADS  Google Scholar 

  • Tariq, K.U., Seadawy, A.R.: Optical soliton solutions of higher order nonlinear Schrödinger equation in monomode fibers and its applications. Optik 154, 785–798 (2018)

    Article  ADS  Google Scholar 

  • Tariq, K.U., Younis, M.: Bright, dark and other optical solitons with second order spatiotemporal dispersion. Optik 142, 446–450 (2017)

    Article  ADS  Google Scholar 

  • Tariq, K.U., Younis, M., Rizvi, S.T.R.: Optical solitons in monomode fibers with higher order nonlinear Schrödinger equation. Optik 154, 360–371 (2018)

    Article  ADS  Google Scholar 

  • Wang, M.L.: Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 213, 279–87 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Multiple-soliton solutions for extended (3 + 1)-dimensional Jimbo–Miwa equations. Appl. Math. Lett. 64, 21–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Weiss, J., Tabor, M., Carnevale, G.: The Painleve property and a partial differential equations with an essential singularity. Phys. Lett. A 27, 205–208 (1985)

    Google Scholar 

  • Wen, X.Y.: Construction of new exact rational form non-travelling wave solutions to the (2+1)-dimensional generalized Broer–Kaup system. Appl. Math. Comput. 217, 1367–1375 (2010)

    MathSciNet  MATH  Google Scholar 

  • Xie, F., Zhang, Y., Zhuosheng, L.: Symbolic computation in non-linear evolution equation: application to (3 + 1)-dimensional Kadomtsev–Petviashvili equation. Chaos, Solitons Fract. 24, 257–263 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Xin, Z., Deng-Shan, W.: A generalized extended rational expansion method and its application to (1+1)-dimensional dispersive long wave equation. Appl. Math. Comput. 212, 296–304 (2009)

    MathSciNet  MATH  Google Scholar 

  • Yavuz, U., Dogan, K., Inanb Ibrahim, E.: Comparison of three semi-analytical methods for solving (1+1)-dimensional dispersive long wave equations. Comput. Math. Appl. 61, 1278–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Yomba, E.: The extended fan sub-equation method and its application to the (2+1)-dimensional dispersive long wave and Whitham–Broer–Kaup equations. Chin. J. Phys. 43, 4 (2005)

    MathSciNet  Google Scholar 

  • Yomba, E.: The modified extended Fan sub-equation method and its application to the (2+1)-dimensional Broer–Kaup–Kupershmidt equation. Chaos, Solitons Fract. 27, 187–196 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zheng, C.L., Fang, J.P.: New exact solutions and fractal patterns of generalized Broer–Kaup system via a mapping approach. Chaos Soliton Fract. 27, 1321–1327 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aly R. Seadawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, K.U., Seadawy, A.R. & Younis, M. Explicit, periodic and dispersive optical soliton solutions to the generalized nonlinear Schrödinger dynamical equation with higher order dispersion and cubic-quintic nonlinear terms. Opt Quant Electron 50, 163 (2018). https://doi.org/10.1007/s11082-018-1424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1424-1

Keywords

Navigation