Skip to main content
Log in

Optical soliton solutions for the parabolic nonlinear Schrödinger Hirota’s equation incorporating spatiotemporal dispersion via the tanh method linked with the Riccati equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This manuscript presents some new exact solutions for the dispersive Schrödinger Hirota’s (SH) equation considering the effects of spatio-temporal dispersion with parabolic law nonlinearity. A wave transformation technique is implemented to transform the SH equation into a nonlinear ordinary differential equation. The solutions for the dispersive SH equation are derived using the modified extended tanh approach. These solutions exhibits various sorts of solitons, including bright, dark, periodic, and singular solitons. The findings of this research hold potential significance in the domain of fiber-optic communication, as they contribute to a deeper understanding of soliton dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahmad, S., Mahmoud, E. E., Saifullah, S., Ullah, A., Ahmad, S., Akgül, A., El Din, S. M.: New waves solutions of a nonlinear Landau-Ginzburg-Higgs equation: The Sardar-sub equation and energy balance approaches. Res. Phys. 51, 106736 (2023)

  • Akinyemi, L., Rezazadeh, H., Shi, Q.-H., Inc, M., Khater, M.M., Ahmad, H., Jhangeer, A., Akbar, M.A.: New optical solitons of perturbed nonlinear Schrödinger-Hirota equation with spatio-temporal dispersion. Res. Phys. 29, 104656 (2021)

    Google Scholar 

  • Ali, M., Alquran, M., BaniKhalid, A.: Symmetric and asymmetric binary-solitons to the generalized two-mode KdV equation: Novel findings for arbitrary nonlinearity and dispersion parameters. Res. Phys. 45, 106250 (2023)

    Google Scholar 

  • Alquran, M.: New interesting optical solutions to the quadratic-cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine-cosine functions. Opt. Quant. Electron. 54(10), 666 (2022)

    Article  Google Scholar 

  • Alquran, M., Al, Smadi T.: Generating new symmetric bi-peakon and singular bi-periodic profile solutions to the generalized doubly dispersive equation. Opt. Quantum Electron. 55(8), 736 (2023)

    Article  Google Scholar 

  • Alquran, M., Najadat, O., Ali, M., Qureshi, S.: New kink-periodic and convex-concave-periodic solutions to the modified regularized long wave equation by means of modified rational trigonometric-hyperbolic functions. Nonlinear Eng. 12(1), 20220307 (2023)

    Article  ADS  Google Scholar 

  • Alquran, M., Najadat, O., Ali, M., Qureshi, S.: New kink-periodic and convex-concave-periodic solutions to the modified regularized long wave equation by means of modified rational trigonometric-hyperbolic functions. Nonlinear Eng. 12(1), 20220307 (2023)

    Article  ADS  Google Scholar 

  • Alquran, M., Ali, M., Gharaibeh, F., Qureshi, S.: Novel investigations of dual-wave solutions to the Kadomtsev–Petviashvili model involving second-order temporal and spatial-temporal dispersion terms. Part. Differ. Equ. Appl. Math. 8, 100543 (2023)

    Google Scholar 

  • Bakodah, H., Banaja, M., Alshaery, A., Al Qarni, A.: Numerical solution of dispersive optical solitons with Schrödinger-Hirota equation by improved Adomian decomposition method. Math. Problems Eng. 219, 296091 (2019)

  • Biswas, A., Konar, S.: Introduction to non-Kerr law optical solitons. CRC Press (2006)

    Book  Google Scholar 

  • Buryak, A.V., Di Trapani, P., Skryabin, D.V., Trillo, S.: Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370(2), 63–235 (2002)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  • Chen, Y.-X.: Two-component excitation governance of giant wave clusters with the partially nonlocal nonlinearity. Nonlinear Eng. 12(1), 20220319 (2023)

    Article  Google Scholar 

  • Chen, Y.-X.: Vector peregrine composites on the periodic background in spin-orbit coupled Spin-1 Bose-Einstein condensates. Chaos Solitons Fractals 169, 113251 (2023)

    Article  MathSciNet  Google Scholar 

  • Chen, H.-Y., Zhu, H.-P.: Higher-dimensional vector two-component solitons of a nonautonomous partially nonlocal coupled NLS model in a linear and harmonic potential. Nonlinear Dyn. 111(1), 581–590 (2023)

    Article  Google Scholar 

  • Dai, C.-Q., Wang, Y.-Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Article  Google Scholar 

  • Dai, C.-Q., Wang, Y.-Y., Zhang, J.-F.: Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102(1), 379–391 (2020)

    Article  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Dispersive optical solitons with Schrödinger-Hirota equation by extended trial equation method. Optik 136, 451–461 (2017)

    Article  ADS  Google Scholar 

  • Fang, Y., Han, H.-B., Bo, W.-B., Liu, W., Wang, B.-H., Wang, Y.-Y., Dai, C.-Q.: Deep neural network for modeling soliton dynamics in the mode-locked laser. Opt. Lett. 48(3), 779–782 (2023)

    Article  PubMed  ADS  Google Scholar 

  • Geng, X., Lv, Y.: Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)

    Article  Google Scholar 

  • Hasegawa, A., Kodama, Y.: Solitons in Optical Communications, no. 7 (Oxford University Press on Demand, Oxford, 1995)

  • Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Res. Phys. 49, 106520 (2023)

    Google Scholar 

  • Khan, A., Saifullah, S., Ahmad, S., Khan, J., Baleanu, D.: Multiple bifurcation solitons, lumps and rogue waves solutions of a generalized perturbed KdV equation. Nonlinear Dyn. 111(6), 5743–5756 (2023)

    Article  Google Scholar 

  • Khater, M.M.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solitons Fractals 169, 113232 (2023)

    Article  MathSciNet  Google Scholar 

  • Kivshar, Y. S., Agrawal, G. P.: Optical solitons: from fibers to photonic crystals. Academic press (2003)

  • Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298(2–3), 81–197 (1998)

    Article  ADS  Google Scholar 

  • Li, P., Peng, X., Xu, C., Han, L., Shi, S.: Novel extended mixed controller design for bifurcation control of Myc/E2F/miR-17-92 network model concerning delay. Math. Methods Appl. Sci. 46(18), 18878–98 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  • Li, P., Lu, Y., Xu, C., Ren, J.: Insight into Hopf bifurcation and control methods in fractional order bam neural networks incorporating symmetric structure and delay. Cognit. Comput. 30, 1–43 (2023)

    Google Scholar 

  • Li, P., Gao, R., Xu, C., Shen, J., Ahmad, S., Li, Y.: Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays. Neural Process. Lett. 17, 1–41 (2023)

    Article  Google Scholar 

  • Mua, D., Xub, C., Liua, Z., Panga, Y.: Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid chemical reaction model incorporating delays. MATCH Commun. Math. Comput. Chem. 89(3), 529–566 (2023)

    Article  Google Scholar 

  • Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear Schrödinger equation by using extended and modified rational expansion method. J. Nonlinear Opt. Phys. Mater. 13, 2350058 (2023)

    Article  Google Scholar 

  • Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, Ameenah N.: Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alex. Eng. J. 73, 173–187 (2023)

    Article  Google Scholar 

  • Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.A.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quant. Electron. 55(10), 868 (2023)

    Article  Google Scholar 

  • Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Res. Phys. 51, 106722 (2023)

    Google Scholar 

  • Ozdemir, N., Secer, A., Ozisik, M., Bayram, M.: Optical solitons for the dispersive Schrödinger-Hirota equation in the presence of spatio-temporal dispersion with parabolic law. Eur. Phys. J. Plus 138(6), 1–10 (2023)

    Article  Google Scholar 

  • Ozisik, M., Secer, A., Bayram, M., Yusuf, A., Sulaiman, T.A.: On the analytical optical soliton solutions of perturbed Radhakrishnan–Kundu–Lakshmanan with Kerr law nonlinearity. Opt. Quantum Electron. 54(6), 371 (2022)

    Article  Google Scholar 

  • Qian, L., Attia, R.A., Qiu, Y., Lu, D., Khater, M.M.: On Breather and Cuspon waves solutions for the generalized higher-order nonlinear Schrodinger equation with light-wave promulgation in an optical fiber. Comp. Meth. Sci. Eng 1, 101–110 (2019)

    Google Scholar 

  • Wang, P., Tian, B., Jiang, Y., Wang, Y.F.: Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains. Physica B 411, 166–172 (2013)

    Article  CAS  ADS  Google Scholar 

  • Wen, X.K., Jiang, J.H., Liu, W., Dai, C.Q.: Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn. 111, 13343–13355 (2023)

  • Xu, C., Liao, M., Li, P., Yao, L., Qin, Q., Shang, Y.: Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller. Fractal Fract. 5(4), 257 (2021)

    Article  Google Scholar 

  • Xu, C., Cui, Q., Liu, Z., Pan, Y., Cui, X., Ou, W., Rahman, M.U., Farman, M., Ahmad, S., Zeb, A.: Extended hybrid controller design of bifurcation in a delayed chemostat model. MATCH Commun. Math. Comput. Chem. 90(3), 609–48 (2023)

    Article  Google Scholar 

  • Xu, C., Mu, D., Liu, Z., Pang, Y., Aouiti, C., Tunc, O., Ahmad, S., Zeb, A.: Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model. Match 89(1), 73–106 (2023)

  • Xu, C., Liu, Z., Li, P., Yan, J., Yao, L.: Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural Process. Lett. 55(5), 6125–51 (2023)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution in the manuscript.

Corresponding author

Correspondence to Shabir Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Gafel, H.S., Khan, A. et al. Optical soliton solutions for the parabolic nonlinear Schrödinger Hirota’s equation incorporating spatiotemporal dispersion via the tanh method linked with the Riccati equation. Opt Quant Electron 56, 382 (2024). https://doi.org/10.1007/s11082-023-05844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05844-z

Keywords

Navigation