Skip to main content
Log in

Highly sensitive photonic crystal fiber biosensor based on titanium nitride

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A highly sensitive surface plasmon resonance photonic crystal fiber (PCF) biosensor based on Titanium Nitride (TiN) as a new alternative plasmonic material is proposed and analyzed. The TiN has high stability, high conductivity, and corrosion resistance which make it an ideal material for nanofabrication. The suggested biosensor is analyzed by full vectorial finite element method with perfectly matched layer as boundary conditions. In this paper, the biosensor geometrical parameters are studied to achieve high sensitivity for both polarized modes. A refractive index sensitivity of 7700 and 3600 nm/RIU for quasi-transverse electric and quasi transverse magnetic modes, respectively, are obtained. Additionally, the reported biosensor could be used for detecting an unknown analyte refractive index ranging from 1.32 to 1.34 with a high linearity. Further, the proposed biosensor structure is easy for fabrication using standard PCF fabrication current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akowuah, E.K., Gorman, T., Ademgil, H., Haxha, S., Member, S., Robinson, G.K., Oliver, J.V.: Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012)

    Article  ADS  Google Scholar 

  • Areed, N.F.F., Hameed, M.F.O., Obayya, S.S.A.: Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quantum Electron. 49, 1–12 (2016)

    Google Scholar 

  • Azab, M.Y., Hameed, M.F.O., Obayya, S.S.A.: Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers. Opt. Quantum Electron. 49, 1–17 (2017)

    Article  Google Scholar 

  • Azzam, S.I., Hameed, M.F.O., Shehata, R.E.A., Heikal, A.M., Obayya, S.S.A.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quantum Electron. 48(2), 1–11 (2016)

    Article  Google Scholar 

  • Bise, R.T., Trevor, D.J.: Sol–gel derived microstructured fiber: fabrication and characterization. OFC/NFOEC Tech. Dig. Opt. Fiber Commun. Conf. 3, 11–13 (2005). https://doi.org/10.1109/ofc.2005.192772

    Google Scholar 

  • Boltasseva, A., Shalaev, V.M.: All that glitters need not be gold. Science. 347, 1308–1310 (2015). https://doi.org/10.1126/science.aaa8282

    Article  ADS  Google Scholar 

  • Cui, D., Chen, H., Bai, X.: Surface platinum metal plasma resonance photonic crystal fiber sensor. Technology 10244, 1–7 (2017). https://doi.org/10.1117/12.2267587

    Google Scholar 

  • Digge, J., Rindhe, B.U., Narayankhedkar, S.K.: Photonic crystal fiber and photonic crystal waveguide based demultiplexers for optical network. Int. J. Comput. Appl. ICWET(2), 21–27 (2013)

  • Falkenstein, P., Justus, B.L.: Fused array preform fabrication of holey optical fibers. Google Patents (2013)

  • Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015). https://doi.org/10.1109/JPHOT.2015.2432079

    Article  Google Scholar 

  • Gordon, R.G., Frisbie, R.W., Musher, J., Thornton, J.: Atmospheric pressure chemical vapor deposition of titanium nitride from titanium bromide and ammonia. MRS Proc. 410, 736–744 (1995). https://doi.org/10.1557/PROC-410-283

    Article  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A.: Ultra short silica liquid crystal photonic crystal fiber polarization rotator. Opt. Lett. 39(4), 1077–1080 (2014)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Azab, M.Y., Heikal, A.M., El Hefnawy, S.M., Obayya, S.S.A.: Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28, 59–62 (2015)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Alrayk, Y.K.A., Shaalan, A.A., El Deeb, W.S., Obayya, S.S.A.: Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10(4), 1–14 (2016a)

    Article  Google Scholar 

  • Hameed, M.F.O., Alrayk, Y.K.A., Obayya, S.S.A.: Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photonics J. 8(3), 1–12 (2016b)

    Article  Google Scholar 

  • Hassani, A., Skorobogatiy, M.: Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express. 14, 11616–11621 (2006). https://doi.org/10.1364/oe.14.011616

    Article  ADS  Google Scholar 

  • Hautakorpi, M., Mattinen, M., Ludvigsen, H.: Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16, 8427–8432 (2008). https://doi.org/10.1364/OE.16.008427

    Article  ADS  Google Scholar 

  • Heil, S.B.S., Langereis, E., Roozeboom, F., van de Sanden, M.C.M., Kessels, W.M.M.: Low-temperature deposition of TiN by plasma-assisted atomic layer deposition. J. Electrochem. Soc. 153, G956–G965 (2006). https://doi.org/10.1149/1.2344843

    Article  Google Scholar 

  • Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003). https://doi.org/10.1007/s00216-003-2101-0

    Article  Google Scholar 

  • Homola, J.I., Slavík, R., Tyroký, J.I.: Interaction between fiber modes and surface plasmon waves: spectral properties. Opt. Lett. 22, 1403–1405 (1997). https://doi.org/10.1364/OL.22.001403

    Article  ADS  Google Scholar 

  • Khalil, A.E., El-Saeed, A.H., Farag, M.A., Hashish, M.E., Roshdi, M., Hameed, M.F.O., Azab, M.Y., Obayya, S.S.A.: Highly Sensitive Photonic Crystal Fiber Biosensor Based on Alternative Plasmonic Material. SPIE Photonics Europe, Strasbourg Convention & Exhibition Centre, Strasbourg, France (2018)

  • Leon-Saval, S.G., Birks, T.A., Joly, N.Y., George, A.K., Wadsworth, W.J., Kakarantzas, G., Russell, P.S.J.: Splice-free interfacing of photonic crystal fibers. Opt. Lett. 30(13), 1629–1631 (2005)

    Article  ADS  Google Scholar 

  • Liu, S., Jin, L., Jin, W., Wang, D., Liao, C., Wang, Y.: Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser. Opt. Express 18, 5496–5503 (2010). https://doi.org/10.1364/OE.18.005496

    Article  ADS  Google Scholar 

  • Liu, C., Yang, L., Su, W., Wang, F., Sun, T., Liu, Q., Mu, H., Chu, P.K.: Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017). https://doi.org/10.1016/j.optcom.2016.07.031

    Article  ADS  Google Scholar 

  • Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076

    Article  Google Scholar 

  • Obayya, S.S.A., Hameed, M.F.O., Areed, N.F.F.: Liquid crystal photonic crystal fiber sensors. In: Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications. Wiley (2016)

  • Otupiri, R., Akowuah, E.K., Haxha, S., Ademgil, H., AbdelMalek, F., Aggoun, A.: A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. (2014). https://doi.org/10.1109/jphot.2014.2335716

    Google Scholar 

  • Patsalas, P., Kalfagiannis, N., Kassavetis, S.: Optical properties and plasmonic performance of titanium nitride. Materials 8, 3128–3154 (2015). https://doi.org/10.3390/ma8063128

    Article  ADS  Google Scholar 

  • Patskovsky, S., Meunier, M., Prasad, P.N., Kabashin, A.V.: Self-noise-filtering phase-sensitive surface plasmon resonance biosensing. Opt. Express 18, 14353 (2010). https://doi.org/10.1364/OE.18.014353

    Article  ADS  Google Scholar 

  • Pflüger, J.: Determination of optical constants by high-energy, electron-energy-loss spectroscopy (EELS). In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids II, pp. 293–310. Academic Press (1991)

  • Pflüger, J., Fink, J., Weber, W., Bohnen, K., Crecelius, G.: Dielectric properties of TiCx, TiNx, VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phys. Rev. B. 30, 1155–1163 (1984). https://doi.org/10.1103/PhysRevB.30.1155

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Shee, Y.G., Ahmed, R., Chow, D.M., Adikan, F.R.M.: Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol. Lett. 27, 1628–1631 (2015). https://doi.org/10.1109/LPT.2015.2432812

    Article  ADS  Google Scholar 

  • Rifat, A.A.: A simple photonic crystal fiber based plasmonic biosensor. In: IONS Dhanbad-2016 (2016)

  • Rifat, A.A., Mahdiraji, G.A., Ahmed, R., Chow, D.M., Sua, Y.M., Shee, Y.G., Adikan, F.R.M.: Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. (2016a). https://doi.org/10.1109/jphot.2015.2510632

    Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Shee, Y.G., Shawon, M.J., Adikan, F.R.M.: A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1–7 (2016b). https://doi.org/10.1016/j.proeng.2015.08.1107

    Article  Google Scholar 

  • Russell, P.: Photonic crystal fibers. Science 299, 358–362 (2003). https://doi.org/10.1126/science.1079280

    Article  ADS  Google Scholar 

  • Vermeulen, D., Selvaraja, S., Verheyen, P., Absil, P., Bogaerts, W., Van Thourhout, D., Roelkens, G.: Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay. IEEE Photonics Technol. Lett. 24, 482–484 (2012). https://doi.org/10.1109/LPT.2011.2181944

    Article  ADS  Google Scholar 

  • Wang, F., Sun, Z., Liu, C., Sun, T., Chu, P.K.: A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12(6), 1847–1853 (2016). https://doi.org/10.1007/s11468-016-0453-5

    Article  Google Scholar 

  • Yasli, A., Akowuah, E.K., Haxha, S., Ademgil, H.: Photonic crystal fiber based surface plasmon sensor design and analyze with elliptical air holes. In: HONET-ICT, Nicosia, pp. 75–78 (2016). https://doi.org/10.1109/honet.2016.7753423

  • Yu, X., Zhang, Y., Pan, S., Shum, P., Yan, M., Leviatan, Y., Li, C.: A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12, 015005 (2010). https://doi.org/10.1088/2040-8978/12/1/015005

    Article  ADS  Google Scholar 

  • Yu, L., Chen, L., Zhang, W., Zhang, Y., Wang, S., Zhang, Y., Yan, T., Yang, J.: Ultrashort polarization rotator based on spiral photonic crystal fiber aided by liquid crystal. Appl. Opt. 56, 7294–7298 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Science & Technology Development Fund” (STDF) in Egypt for financial support under project number 10563.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Farhat O. Hameed or S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, A.E., El-Saeed, A.H., Ibrahim, M.A. et al. Highly sensitive photonic crystal fiber biosensor based on titanium nitride. Opt Quant Electron 50, 158 (2018). https://doi.org/10.1007/s11082-018-1397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1397-0

Keywords

Navigation