Skip to main content
Log in

Sensitivity Measurement based on the Refractive Index Detection of Dual-Coated PCF SPR Sensor

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

This research article presents and investigates the gold–titanium dioxide (Au-TiO2) dual coating photonic crystal fiber (PCF) plasmonic sensor. The popularly known octagonal lattice is used to create the cladding part of the fiber, and plasmonic material coatings are used in the fiber’s outer side, which provides the sensor design for fabrication prospects easier. The performance analysis is investigated by considering amplitude and wavelength for the analyte refractive index 1.375–1.400. The finite element method performs the numerical analysis at an operating wavelength from 0.9 to 1.3 µm, respectively. The simulation result indicates that the proposed sensor achieved wavelength sensitivity and amplitude sensitivity of 20000 nm/RIU and 1847 1/RIU, respectively. Owing to the low complexity, ease to fabricate, and high sensing performance, the proposed PCF biosensor design can be associable with chemical and biological analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang and S.S. Yee, Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol., 75 (2002) 61–69.

    Article  Google Scholar 

  2. V. Koubova, E. Brynda, L. Karasova, J. Škvor, J. Homola, J. Dostalek, P. Tobiška and J. Rošický, Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors Actuators B Chem., 74 (2001) 100–105.

    Article  Google Scholar 

  3. C.P. Cahill, K.S. Johnston and S.S. Yee, A surface plasmon resonance sensor probe based on retro-reflection. Sensors Actuators B Chem., 45 (1997) 161–166.

    Article  Google Scholar 

  4. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108 (2008) 462–493.

    Article  Google Scholar 

  5. R.C. Jorgenson and S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem., 12 (1993) 213–220.

    Article  Google Scholar 

  6. M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold and K. Cammann, Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy. Sensors Actuators B Chem., 34 (1996) 328–333.

    Article  Google Scholar 

  7. S. Fang, H.J. Lee, A.W. Wark and R.M. Corn, Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J. Am. Chem. Soc., 128 (2006) 14044–14046.

    Article  Google Scholar 

  8. A.K. Paul, A.K. Sarkar, A.B.S. Rahman and A. Khaleque, Twin core photonic crystal fiber plasmonic refractive index sensor. IEEE Sensors J., 18 (2018) 5761–5769.

    Article  ADS  Google Scholar 

  9. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons Nucl., 216 (1968) 398–410.

    Article  ADS  Google Scholar 

  10. E. Kretschmann and H. Raether, Plasma resonance emission in solid bodies(Plasma resonance light emission mechanisms in solid bodies, discussing production by electron and light irradiation of body surface). Zeitschrift Fuer Naturforschung, Ausgabe A, 23 (1968) 615–617.

    Article  ADS  Google Scholar 

  11. B.D. Gupta and R.K. Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sensors, 2009 (2009) 979761

  12. B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin and M. Skorobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express, 15 (2007) 11413–11426.

    Article  ADS  Google Scholar 

  13. A. Hassani, B. Gauvreau, M.F. Fehri, A. Kabashin and M. Skorobogatiy, Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR. Electromagnetics, 28 (2008) 198–213.

    Article  Google Scholar 

  14. B. Shuai, L. Xia and D. Liu, Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt. Express, 20 (2012) 25858–25866.

    Article  ADS  Google Scholar 

  15. J.N. Dash and R. Jha, SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photon. Technol. Lett., 26 (2014) 595–598.

    Article  ADS  Google Scholar 

  16. S.M. Atiqullah, A. Palit, M.I. Reja, J. Akhtar, S. Fatema and R. Absar, Detection of harmful food additives using highly sensitive photonic crystal fiber. Sens. Bio-Sens. Res, 23 (2019) 100275.

    Article  Google Scholar 

  17. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji, S.H. Yun and F.M. Adikan, Photonic crystal fiber based plasmonic sensors. Sensors Actuators B Chem., 243 (2017) 311–325.

    Article  Google Scholar 

  18. K.M. McPeak, S.V. Jayanti, S.J. Kress, S. Meyer, S. Iotti, A. Rossinelli and D.J. Norris, Plasmonic films can easily be better: rules and recipes. ACS Photon., 2 (2015) 326–333.

    Article  Google Scholar 

  19. G.V. Naik, V.M. Shalaev and A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25 (2013) 3264–3294.

    Article  Google Scholar 

  20. J.N. Dash and R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon. Technol. Lett, 26 (2014) 1092–1095.

    Article  ADS  Google Scholar 

  21. M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy and S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett., 28 (2015) 59–62.

    Article  ADS  Google Scholar 

  22. D. Gao, C. Guan, Y. Wen, X. Zhong and L. Yuan, Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun., 313 (2014) 94–98.

    Article  ADS  Google Scholar 

  23. V.A. Popescu, N.N. Puscas and G. Perrone, Power absorption efficiency of a new microstructured plasmon optical fiber. JOSA B, 29 (2012) 3039–3046.

    Article  ADS  Google Scholar 

  24. A. Hassani and M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express, 14 (2006) 11616–11621.

    Article  ADS  Google Scholar 

  25. N. Luan, R. Wang, W. Lv and J. Yao, Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express, 23 (2015) 8576–8582.

    Article  ADS  Google Scholar 

  26. J. Boehm, A. François, H. Ebendorff-Heidepriem and T.M. Monro, Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. Plasmonics, 6 (2011) 133–136.

    Article  Google Scholar 

  27. V. Kaur and S. Singh, Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection. Sens. Bio-sens. Res., 15 (2017) 12–16.

    Article  Google Scholar 

  28. V. Kaur and S. Singh, Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt. Fiber Technol., 48 (2019) 159–164.

    Article  ADS  Google Scholar 

  29. R.K. Gangwar, V.A. Amorim and P.V.S. Marques, High performance titanium oxide coated D-shaped optical fiber plasmonic sensor. IEEE Sens. J., 19 (2019) 9244–9248.

    Article  ADS  Google Scholar 

  30. G. Robinson, The commercial development of planar optical biosensors. Sens. Actuators B Chem., 29 (1995) 31–36.

    Article  Google Scholar 

  31. X. Chen, L. Xia and C. Li, Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photon. J., 10 (2018) 1–9.

    Google Scholar 

  32. S. Nivedha, P.R. Babu, and K. Senthilnathan, D-shaped plasmonic sensor using a molybdenum disulfide doped photonic crystal fiber. In IOP Conference Series: Materials Science and Engineering ,2017, (Vol. 263, No. 5, 052031).

  33. M. Tian, P. Lu, L. Chen, C. Lv and D. Liu, All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun., 285 (2012) 1550–1554.

    Article  ADS  Google Scholar 

  34. R.K. Gangwar and V.K. Singh, Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics, 12 (2017) 1367–1372.

    Article  Google Scholar 

  35. D. Kumar and K.G. Suman, Noninvasive temperature measuring and early fault detecting system for manufacturing industry. MAPAN, 34 (2019) 541–550.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, D. Sensitivity Measurement based on the Refractive Index Detection of Dual-Coated PCF SPR Sensor. MAPAN 37, 435–441 (2022). https://doi.org/10.1007/s12647-022-00553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00553-6

Keywords

Navigation