Skip to main content
Log in

Near-infrared laser scanning confocal microscopy and its application in bioimaging

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Near-infrared (NIR) fluorescence imaging is an important imaging technology in deep-tissue biomedical imaging and related researches, due to the low absorption and scattering of NIR excitation and/or emission in biological tissues. Laser scanning confocal microscopy (LSCM) plays a significant role in the family of fluorescence microscopy. Due to the introduction of pinhole, it can provide images with optical sectioning, high signal-to-noise ratio and better spatial resolution. In this study, in order to combine the advantages of these two techniques, we set up a fluorescence microscopic imaging system, which can be named as NIR-LSCM. The system was based on a commercially available confocal microscope, utilizing a NIR laser for excitation and a NIR sensitive detector for signal collection. In addition, NIR fluorescent nanoparticles (NPs) were prepared, and utilized for fluorescence imaging of the ear and brain of living mice based on the NIR-LSCM system. The structure of blood vessels at certain depth could be visualized clearly, because of the high-resolution and large-depth imaging capability of NIR-LSCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chu, L., Wang, S., Li, K., et al.: Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging. Biomed. Opt. Express 5(11), 4076–4088 (2014)

    Article  Google Scholar 

  • Diev, V.V., Schlenker, C.W., Hanson, K., Zhong, Q., Zimmerman, J.D., Forrest, S.R., et al.: Porphyrins fused with unactivated polycyclic aromatic hydrocarbons. J. Org. Chem. 77(1), 143–159 (2012)

    Article  Google Scholar 

  • Grutzendler, J., Yang, G., Pan, F., Parkhurst, C.N., Gan, W.B.: Transcranial two-photon imaging of the living mouse brain. Cold Spring Harbor Protoc. 2011(9), prot065474 (2011)

    Article  Google Scholar 

  • Hardham, A.R.: Confocal microscopy in plant-pathogen interactions. Methods Mol. Biol. 835(835), 295–309 (2012)

    Article  Google Scholar 

  • Horton, N.G., Wang, K., Demirhan, K., Clark, C.G., Wise, F.W., Schaffer, C.B., Xu, C.: In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7(3), 205–209 (2013)

    Article  ADS  Google Scholar 

  • Huang, X., EI-Sayed, I.H., Qian, W., EI-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006)

    Article  Google Scholar 

  • Inglefield, J.R., Schwartz-Bloom, R.D.: Confocal imaging of intracellular chloride in living brain slices: measurement of gabaa receptor activity. J. Neurosci. Methods 75(2), 127–135 (1997)

    Article  Google Scholar 

  • Kim, J.S., Kim, Y.H., Kim, J.H., Kang, K.W., Tae, E.L., Youn, H., et al.: Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation. Nanomedicine 7(2), 219–229 (2012)

    Article  Google Scholar 

  • Kim, T.I., Jeong, K.H., Min, K.S.: Verrucous epidermal nevus (VEN) successfully treated with indocyanine green (ICG) photodynamic therapy (PDT). Jaad Case Rep. 1(5), 312–314 (2015)

    Article  Google Scholar 

  • Liu, B., Li, C., Chen, G., Liu, B., Deng, X., Wei, Y., et al.: Synthesis and optimization of MoS2@Fe3O4-ICG/PT(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv. Sci. 4(8), 1600540 (2017)

    Article  Google Scholar 

  • Luo, T., Huang, P., Gao, G., Shen, G., Fu, S., Cui, D., et al.: Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt. Express 19(18), 17030–17039 (2011)

    Article  ADS  Google Scholar 

  • Ntziachristos, V.: Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7(8), 603–614 (2010)

    Article  Google Scholar 

  • O’Connell, M.K., Murthy, S., Phan, S., Xu, C., Buchanan, J.A., Spilker, R., et al.: The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal & electron microscopy imaging. Matrix Biol. 27(3), 171–181 (2008)

    Article  Google Scholar 

  • Owens, E.A., Lee, S., Choi, J., Henary, M., Choi, H.S.: NIR fluorescent small molecules for intraoperative imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(6), 828–838 (2015)

    Article  Google Scholar 

  • Ryeom, H.K., Kim, S.H., Kim, J.Y., Kim, H.J., Lee, J.M., Chang, Y.M., et al.: Quantitative evaluation of liver function with MRI using Gd-EOB-DTPA. Korean J. Radiol. 5(4), 231–239 (2004)

    Article  Google Scholar 

  • Shi Kam, N.W., O’Connell, M., Wisdom, J.A., Dai, H.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102(33), 11600–11605 (2005)

    Article  ADS  Google Scholar 

  • Tao, H., Yang, K., Ma, Z., Wan, J., Zhang, Y., Kang, Z., et al.: In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2), 281–290 (2012)

    Article  Google Scholar 

  • Treger, J.S., Priest, M.F., Iezzi, R., et al.: Real-time imaging of electrical signals with an infrared fda-approved dye. Biophys. J. 107(6), L09–L12 (2014)

    Article  Google Scholar 

  • Uh, H., Petoud, S.: Novel antennae for the sensitization of near infrared luminescent lanthanide cations. C. R. Chim. 13(6–7), 668–680 (2010)

    Article  Google Scholar 

  • Webb, R.H.: Confocal optical microscopy. Rep. Prog. Phys. 59(3), 427–471 (1996)

    Article  ADS  Google Scholar 

  • Weissleder, R.: A clearer vision for in vivo imaging. Nat. Biotechnol. 19(4), 316–317 (2001)

    Article  Google Scholar 

  • Welsher, K., Liu, Z., Daranciang, D., Dai, H.: Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8(2), 586–590 (2008)

    Article  ADS  Google Scholar 

  • Welsher, K., Liu, Z., Sherlock, S.P., et al.: A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4(11), 773–780 (2009)

    Article  ADS  Google Scholar 

  • Welsher, K., Sherlock, S.P., Dai, H.: Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 108(22), 8943–8948 (2011)

    Article  ADS  Google Scholar 

  • Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005)

    Article  Google Scholar 

  • Yodh, A., Chance, B.: Spectroscopy and imaging with diffusing light. Phys. Today 48(3), 34–40 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LR17F050001) and the National Natural Science Foundation of China (61735016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Wang, Y., Zhang, H. et al. Near-infrared laser scanning confocal microscopy and its application in bioimaging. Opt Quant Electron 50, 35 (2018). https://doi.org/10.1007/s11082-017-1309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1309-8

Keywords

Navigation