Skip to main content
Log in

Computing exact solutions for conformable time fractional generalized seventh-order KdV equation by using \({\left( {{\varvec{G}}}^{\prime }/{{\varvec{G}}}\right) }\)-expansion method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the authors have established the \(\left( G^{\prime }/G\right)\)-expansion method to find exact solutions for conformable time fractional generalized seventh-order KdV equation (FGKdV7). This method is an effective method in finding exact traveling wave solutions of nonlinear evolution equations in mathematical physics. The effectiveness of this manageable method has been shown by applying it to several particular cases of the FGKdV7. The present approach has the potential to be applied to other nonlinear fractional differential equations. All of the numerical calculations in the present study have been performed on a PC applying some programs written in Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  • Akbar, M.A., Ali, N.H.M.: Exp-function method for Duffing equation and new solutions of (2 + 1) dimensional dispersive long wave equations. Prog. Appl. Math. 1(2), 30–42 (2011)

    Google Scholar 

  • Akbar, M.A., Ali, N.H.M.: The modified alternative-expansion method for finding the exact solutions of nonlinear PDEs in mathematical physics. Int. J. Phys. Sci. 6(35), 7910–7920 (2011)

    Google Scholar 

  • Akter, J., Akbar, M.A.: Solitary wave solutions to two nonlinear evolution equations via the modified simple equation method. N. Trends Math. Sci. 4, 12–26 (2016)

    Article  Google Scholar 

  • Alam, M.N., Belgacem, F.B.M., Akbar, M.A.: Analytical treatment of the evolutionary \((1+1)\)-dimensional combined KdV-mKdV equation via the Novel \((G^{\prime }/G)\)-expansion method. J. Appl. Math. Phys. 3(12), 1571–1579 (2015)

    Article  Google Scholar 

  • Alam, M.N., Hafez, M.G., Belgacem, F.B.M., Akbar, M.A.: Applications of the novel \((G^{\prime }/G)\)-expansion method to find new exact traveling wave solutions of the nonlinear coupled Higgs field equation. Nonlinear Stud. 22(4), 613–633 (2015)

    MATH  MathSciNet  Google Scholar 

  • Ali Akbar, M., Ali, N.H.M.: The improved F-expansion method with Riccati equation and its applications in mathematical physics. Cogent Math. 4(1), 1282577 (2017)

    Article  Google Scholar 

  • Ali, A.T.: New generalized Jacobi elliptic function rational expansion method. J. Comput. Appl. Math. 235, 4117–27 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Ayhan, B., Bekir, A.: The \((G^{\prime }/G)\)-expansion method for the nonlinear lattice equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3490–3498 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Biswas, A.: Topological 1-soliton solution of the nonlinear Schrodingers equation with Kerr law nonlinearity in (1 + 2) dimensions. Commun. Nonlinear Sci. Numer. Simulat. 14, 2845–7 (2009)

    Article  ADS  MATH  Google Scholar 

  • Ebadi, G., Biswas, A.: Application of the \((G^{\prime }/G)\)-expansion method for nonlinear diffusion equations with nonlinear source. J. Franklin Ins. 347, 1391–1398 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Feng, J., Li, W., Wan, Q.: Using \((G^{\prime }/G)\)-expansion method to seek the travelling wave solution of Kolmogorov-Petrovskii-Piskunov equation. Appl. Math. Comput. 217, 5860–5865 (2011)

    MATH  MathSciNet  Google Scholar 

  • He, Y., Li, S., Long, Y.: Exact solutions of the Klein-Gordon equation by modified Exp-function method. Int. Math. Forum. 7(4), 175–82 (2012)

    MATH  MathSciNet  Google Scholar 

  • Hirota, R.: The direct method in Soliton theory, vol. 155. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Hossain, A.K.S., Akbar, M.A., Wazwaz, A.M.: Closed form solutions of complex wave equations via the modified simple equation method. Cog. Phys. 4(1), 1312751 (2017)

    Google Scholar 

  • Islam, M.S., Akbar, M.A., Khan, K.: The improved F-expansion method and its application to the MEE circular rod equation and the ZKBBM equation. Cogent Math. 4(1), 1378530 (2017)

    Article  Google Scholar 

  • Khalil, R., et al.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Liang, M.S., et al.: A method to construct Weierstrass elliptic function solution for nonlinear equations. Int. J. Modern Phys. B 25(4), 1931–9 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  • Liu, X., Tian, L., Wu, Y.: Application of \((G^{\prime }/G)\)-expansion method to two nonlinear evolution equations. Appl. Math. Comput. 217, 1376–1384 (2010)

    MATH  MathSciNet  Google Scholar 

  • Mohyud-Din, S.T., Nawaz, T., Azhar, E., Akbar, M.A.: Fractional sub-equation method to spacetime fractional Calogero-Degasperis and potential Kadomtsev-Petviashvili equations. J. Taibah Univ. Sci. 11(2), 258–263 (2017)

    Article  Google Scholar 

  • Naher, H., Abdullah, F.A., Akbar, M.A.: The \((G^{\prime }/G)\)-expansion method for abundant travelling wave solutions of Caudrey-Dodd-Gibbon equation. Math. Prob. Eng. 218216. https://doi.org/10.1155/2011/218216 (2011)

  • Nassar, H.A., Abdel-Razek, M.A., Seddeek, A.K.: Expanding the tanh-function method for solving nonlinear equations. Appl. Math. 2, 1096–1104 (2011)

    Article  MathSciNet  Google Scholar 

  • Ozis, T., Aslan, I.: Application of the \((G^{\prime }/G)\)-expansion method to Kawahara type equations using symbolic computation. Appl. Math. Comput. 216, 2360–2365 (2010)

    MATH  MathSciNet  Google Scholar 

  • Pomeau, Y., Ramani, A., Grammaticos, B.: Structural stability of the Korteweg-de Vries solitons under a singular perturbation. Phys. D 31(1), 127–134 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Sirendaoreji, New: Exact travelling wave solutions for the Kawahara and modified Kawahara equations. Chaos Solitons Fract 19, 147–50 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Vitanov, N.K., Dimitrova, Z.I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Int. J. Eng. App. Sci. 15(10), 2836–45 (2010)

    MATH  MathSciNet  Google Scholar 

  • Wadati, M.: Introduction to solitons, Pramana. J. Phys. 57(5/6), 841–847 (2001)

    Google Scholar 

  • Wang, M., Li, X., Zhang, J.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2), 754–761 (2008)

    MATH  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Al-Joudi, S.: Applications of an extended \((G^{\prime }/G)\)-expansion method to find exact solutions of nonlinear PDEs in mathematical physics. Math. Prob. Eng. 768573. https://doi.org/10.1155/2010/768573 (2010)

  • Zayed, E.M.E.: Traveling wave solutions for higher dimensional nonlinear evolution equations using the \((G^{\prime }/G)\)-expansion method. J. Appl. Math. Inform. 28, 383–395 (2010)

    MATH  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E.: The modified Kudryashov method for solving some seventh order nonlinear PDEs in mathematical physics. World J. Model. Simul. 11, 308–319 (2015)

    Google Scholar 

  • Zayed, E.M.E., Ibrahim, S.A.H.: Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett. 29(6), 060201 (2012)

    Article  MATH  Google Scholar 

  • Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: On the solitary wave solutions for nonlinear Hirota-Sasuma coupled KDV equations. Chaos, Solitons Fractals 22, 285–303 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Zayed, E.M., Amer, Y.A., Shohib, R.M.: Exact traveling wave solutions for nonlinear fractional partial differential equations for nonlinear fractional partial differential equations using improved \((G^{\prime }/G)\)-expansion method. Int. J. Eng. Appl. Sci. 4(7), 8269 (2014)

    Google Scholar 

  • Zayed, E.M., Amer, Y.A., Shohib, R.M.: The fractional \((D^\alpha _\xi G/G)\)-expansion method and its applications for solving four nonlinear space-time fractional PDEs in Mathematical Physics. Ital. J. Pure Appl. Math. 34, 463–482 (2015)

    MATH  Google Scholar 

  • Zayed, E.M., Amer, Y.A., Shohib, R.M.: The fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics. J. Assoc. Arab Univ. Basic Appl. Sci. 19, 59–69 (2016)

    Google Scholar 

  • Zhang, H.: Application of the \((G^{\prime }/G)\)-expansion method for the complex KdV equation. Commun. Nonlinear Sci. Numer. Simulat. 15, 1700–1704 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Zheng, B., Wen, C.: Exact solutions for fractional partial differential equations by a new fractional sub-equation method. Adv. Differ. Equ. 2013, 199 (2013). https://doi.org/10.1186/1687/1847/2013/199

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.B., Wang, M.L., Wang, Y.M.: Periodic wave solutions to coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–6 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Darzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agheli, B., Darzi, R. & Dabbaghian, A. Computing exact solutions for conformable time fractional generalized seventh-order KdV equation by using \({\left( {{\varvec{G}}}^{\prime }/{{\varvec{G}}}\right) }\)-expansion method. Opt Quant Electron 49, 387 (2017). https://doi.org/10.1007/s11082-017-1223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1223-0

Keywords

Mathematics Subject Classification

Navigation