Skip to main content
Log in

The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

By using a variational method of Pekar type, we investigate the effects of the hydrogen-like impurity and magnetic field on the electron’s probability density (PD) and oscillating frequency (OF) of a RbCl quantum pseudodot qubit. Numerical results indicate that (1) the PD oscillates periodically; (2) the crest of the PD will decrease with increasing the cyclotron frequencies and the Coulombic impurity potential strength; (3) as the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential increases, PD’s peaks will occur more frequently; (4) besides, Figs. 1b and 2b clearly show that in a single period the PD will decrease with increasing the cyclotron frequency and the Coulombic impurity potential strength when \( t > 1.8\;\text{fs} \); whereas the changing law is just the opposite when \( t < 1.8\;\text{fs} \); (5) the OF is an aggrandizing function of the strength of the Coulombic impurity potential, whereas it is a decaying one of the cyclotron frequencies of the magnetic field. The coherence of qubit is crucial to the investigations of quantum information and quantum computation, where the electron’s PD, the OF and the coherence time are the physical quantities representing the properties of coherence. Our research results fine that by changing the cyclotron frequency of the magnetic field and the strength of the Coulombic impurity potential one can adjust the electron’s PD and the OF.

The PD \( \text{Q}\left( {r,t} \right) \) versus the time \( t \) and the cyclotron frequency of the magnetic field \( \omega_{c} \) with \( \text{V}_{0} = 10.0\,\text{meV, r}_{0} = 1.0\,\text{nm, }\beta \text{ = 1.0}\,\text{meV} \cdot \text{nm} \) and \( x = y = z = 1.0\,\text{nm} \)

The PD \( \text{Q}\left( {r,t} \right) \) versus the time \( t \) and strength of the Coulombic impurity potential \( \beta \) with \( \text{V}_{0} = 10.0\,\text{meV, r}_{0} = 1.0\,\text{nm,} \, \omega_{c} \text{ = 2.0}\, \times \text{10}^{13}\,\text{Hz} \) and \( x = y = z = 1.0\,\text{nm} \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 3

Similar content being viewed by others

References

  • Asadpour, S.H.: Goos-Hanchen shifts due to spin-orbit coupling in the carbon nanotube quantum dot nanostructures. Appl. Opt. 56, 2201–2208 (2017)

    Article  ADS  Google Scholar 

  • Asadpour, S.H., Soleimani, H.R.: Phase control of optical bistability based biexciton coherence in a quantum dot nanostructure. Physica B 440, 124–129 (2014)

    Article  ADS  Google Scholar 

  • Cai, C.Y., Zhao, C.L., Xiao, J.L.: The effect of magnetic field on an asymmetric Gaussian potential quantum well qubit. Commun. Theor. Phys. 63, 159–162 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Cetin, A.: A quantum pseudodot system with a two-dimensional pseudoharmonic potential. Phys. Lett. A 372, 3852–3856 (2008)

    Article  ADS  MATH  Google Scholar 

  • Devreese, J.T.: Polarons in ionic crystals and polar semiconductors. North-Holland, Amsterdam (1972)

    Google Scholar 

  • Ding, Z.H., Sun, Y., Xiao, J.L.: Optical phonon effect in an asymmetric quantum dot qubit. Int. J. Quantum Inf. 10, 1250077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Ikhdair, S.M., Hamzavi, M.: A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields. Physica B 407, 4198–4207 (2012)

    Article  ADS  Google Scholar 

  • Khordad, R.: Spin-orbit interaction in a quantum pseudodot: pressure effect. J. Comput. Electron. 13, 383–393 (2014)

    Article  Google Scholar 

  • Khordad, R.: Bound polaron in a quantum pseudodot under Rashba effect. Physica E 69, 249–252 (2015)

    Article  ADS  Google Scholar 

  • Landau, L.D., Pekar, S.I.: Effective mass of the polaron. J. Exp. Theor. Phys. 18, 419–423 (1948)

    Google Scholar 

  • Li, Z.X., Xiao, J.L.: Effects of spin on the ground-state energy of strong-coupling bound magnetopolaron in an asymmetric quantum dot. Int. J. Mod. Phys. B. 26, 1250185-1-8 (2012)

    ADS  MATH  Google Scholar 

  • Li, W.P., Yin, J.W., Yu, Y.F., Xiao, J.L.: The effect of magnetic on the properties of a parabolic quantum dot qubit. J. Low Temp. Phys. 160, 112–118 (2010)

    Article  ADS  Google Scholar 

  • Ma, X.J., Qi, B., Xiao, J.L.: Coulomb impurity potential RbCl quantum pseudodot qubit. J. Low Temp. Phys. 180, 315–320 (2015)

    Article  ADS  Google Scholar 

  • Pekar, S.I.: Untersuchungen über die Elektronen-theorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  • Pekar, S.I., Deigen, M.F.: The quantum states and the optical transitions of an electron in a polaron and in a color center in a crystal. ZH. Eksp. Teor. Fiz. (USSR) 18, 481–486 (1948)

    Google Scholar 

  • Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K., Karimi, M.J.: Intersubband optical absorption coefficient changes and refractive index changes in a two-dimensional quantum pseudodot system. Superlattices Microstruct. 48, 450–457 (2010)

    Article  ADS  Google Scholar 

  • Shan, S.P., Chen, S.H., Xiao, J.L.: Polaron Rashba effect in an asymmetric quantum dot. Low Temp. Phys. 40, 712–715 (2014)

    Article  Google Scholar 

  • Solookinejad, G., Panahi, M., Sangachin, E.A., Asadpour, S.H.: Incoherent control of Goos-Hanchen shifts in a four-level InGaN/GaN quantum dot nanostructure. Laser Phys. 26, 045202-1-6 (2016)

    ADS  Google Scholar 

  • Sun, Y., Ding, Z.H., Xiao, J.L.: State energies and transition frequency of strong-coupling polaron in an anisotropic quantum dot. J. At. Mol. Sci. 4, 176–182 (2013)

    Google Scholar 

  • Sun, Y., Ding, Z.H., Xiao, J.L.: The effect of phonons in RbCl quantum pseudodot qubits. J. Electron. Mater. 45, 3576–3580 (2016)

    Article  ADS  Google Scholar 

  • Wang, Z.W., Xiao, J.L.: Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta. Phys. Sin. 56, 678–682 (2007)

    Google Scholar 

  • Wang, Z.W., Li, W.P., Yin, J.W., Xiao, J.L.: Properties of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 49, 311–314 (2008)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: Influences of temperature and coulomb bound potential on the properties of quantum rod qubit. Superlattices Microstruct. 60, 248–256 (2013)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: The effect of magnetic field on RbCl quantum pseudodot qubit. Mod. Phys. Lett. B 29, 1550098 (2015)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot. Chin. Phys. B 26, 027104 (2017)

    Article  ADS  Google Scholar 

  • Xie, W.F., Chen, Y.: Optical absorption and refractive index of a donor impurity in a three-dimensional quantum pseudodot. Superlattices Microstruct. 50, 691–697 (2011)

    Article  ADS  Google Scholar 

  • Yu, Y.B., Wang, H.J.: Third-harmonic generation in two-dimensional pseudo-dot system with an applied magnetic field. Superlattices Microstruct. 50, 252–260 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant Nos. 11464033 and 11464034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, LQ., Xiao, JL. The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit. Opt Quant Electron 49, 304 (2017). https://doi.org/10.1007/s11082-017-1146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1146-9

Keywords

Navigation