Skip to main content
Log in

Full-Optical TOAD based Walsh-Hadamard code generation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Transmission of information takes place simultaneously over the same available channel bandwidth in Code Division Multiple Access (CDMA) technique. The spread spectrum (SS) technique is used in CDMA systems for transmission of information by employing spreading codes. A unique spreading code, acts as a signature code, is assigned for each individual user. The signal occupies a bandwidth much larger than the minimum necessary to send the information in SS modulation technique. A synchronized reception with the code at the receiver is applied for dispreading the information before the data recovery. From a long-term, Walsh-Hadamard codes have been employed as spread spectrum codes in CDMA communications due to their ease of generation. Walsh-Hadamard codes are absolutely orthogonal binary user codes which have so many favourite applications in synchronous multicarrier communications. However, the optical application of Walsh-Hadamard codes turns important for optical CDMA to solve the above problem. For this, the designs need the use of nonlinear optics capable of controlling multi-valued signals. To achieve this goal all-optical terahertz optical asymmetric Demultiplexer based design of Walsh-Hadamard codes is explored in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Caulfield, H.J., Dolev, S.: Why future supercomputing requires optics. Nat. Photon. 94, 262–263 (2010). doi:10.1038/nphoton

    Google Scholar 

  • Caulfield, H.J., Dolev, S, Green, W.M.: Optical high-performance computing: introduction to the JOSA A and Applied Optics feature. J. Appl. Opt. A. 48(22), OHPC1–OHPC3 (2009). doi:10.1364/AO.48.0OHPC1

    Article  Google Scholar 

  • Chattopadhyay, T., Roy, J.N., Chakraborty, A.K.: Polarization encoded alloptical quaternary R-S flip-flop using binary latch. Opt. Commun. 282, 1287–1293 (2009). doi:10.1016/j.optcom.2008.12.022

    Article  ADS  Google Scholar 

  • Eichmann, G., Li, Y., Alfano, R.R.: Optical binary coded ternary arithmetic and logic. Appl. Opt. 25(18), 3113–3121 (1986)

    Article  ADS  Google Scholar 

  • Huang, Y.K., Glesk, I., Shankar, R., Prucnal, P.R.: Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD. Opt. Express 14(22), 10339–10344 (2006)

    Article  ADS  Google Scholar 

  • Ji, C., Broeke, R.G., Du, Y., Cao, J., Chubun, N., Bjeletich, P., Olsson, F., Lourdudoss, S., Welty, R., Reinhardt, C., Stephan, P.L., Yoo, S.J.B.: Monolithically integrated InP based photonic chip development for O-CDMA systems. IEEE J. Select. Topics Quantum Electron 11, 66–77 (2005)

    Article  Google Scholar 

  • Jung, Y.J., Lee, S., Park, N.: All-optical 4-bit gray code to binary coded decimal converter, optical components and materials. Proc. SPIE 6890, 68900S (2008)

    Article  ADS  Google Scholar 

  • Li, J., Li, L., Jin, L., Li, C.: All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization maintaining fiberring resonator. Opt. Commun. 260, 318–323 (2006)

    Article  ADS  Google Scholar 

  • Liu, S., Li, C., Wu, J., Liu, Y.: Optoelectronic multiple-valued logic implementation. Opt. Lett. 14(14), 713–715 (1989)

    Article  ADS  Google Scholar 

  • Maity, S.P., Mukherrjee, M.: On optimization of CI/MC-CDMA system. 20th IEEE Personal, pp. 3203–3207. Indoor and Mobile Radio Comm. Symp., Japan (2009)

    Google Scholar 

  • Popovic, B.M.: Spreading sequences for multicarrier CDMA systems. IEEE Trans. Commun. 47(5), 918–926 (1999)

    Article  Google Scholar 

  • Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon. 4(8), 518–526 (2010). doi:10.1038/nphoton.2010.179

    Article  ADS  Google Scholar 

  • Roy, J.N., Gayen, D.K.: Integrated all-optical logic and arithmetic operations with the help of TOAD based interferometer device–alternative approach. Appl. Opt. 46(22), 5304–5310 (2007)

    Article  ADS  Google Scholar 

  • Shen, Z.Y., Wu, L.L.: Reconfigurable optical logic unit with a terahertz optical asymmetric demultiplexer and electro-optic switches. Appl. Opt. 47(21), 3737–3742 (2008)

    Article  ADS  Google Scholar 

  • Shvets G. Optical polarsizer/isolator based on a rectangular waveguide with helical grooves. Appl. Phys. Lett. 89(14), 141127 (2006). doi:10.1063/1.2355466

    Article  ADS  Google Scholar 

  • Sokoloff, J.P., Prucnal, P.R., Glesk, I., Kane, M.: A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photon. Techno. Lett. 5(7), 787–789 (1993)

    Article  ADS  Google Scholar 

  • Sokoloff, J.P., Glesk, I., Prucnal, P.R., Boneck, R.K.: Performance of a 50 Gbit/s Optical time domain multiplexed system using a terahertz optical asymmetric demultiplexer. IEEE Photon. Techno. Lett. 6(1), 98–100 (1994)

    Article  ADS  Google Scholar 

  • Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Designing of polarization encoded all-optical ternary multiplexer and demultiplexer. Recent Pat. Signal Process. 1, 143–155 (2011). doi:10.2174/1877612411101020143

    Google Scholar 

  • Wang, B.C., Baby, V., Tong, W., Xu, L., Friedman, M., Runser, R.J., Glesk, I., Pruncnal, P.R.: A novel fast optical switch based on two cascaded terahertz asymmetric demultiplexers (TOAD). Opt. Express 10(1), 15–23 (2002)

    Article  ADS  Google Scholar 

  • Woods, D., Naughton, T.J.: Photonic neural networks. Nat. Phys. 8, 257–259 (2012). doi:10.1038/nphys2283

    Article  Google Scholar 

  • Wornell, G.W.: Spread-signature CDMA: efficient multi-user comm-unication in the presence of fading. IEEE Trans. Inform. Theory 41(5), 1418–1438 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A.K. Full-Optical TOAD based Walsh-Hadamard code generation. Opt Quant Electron 49, 290 (2017). https://doi.org/10.1007/s11082-017-1130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1130-4

Keywords

Navigation