Skip to main content
Log in

Two narrow dark polaritons in triple-well microcavity based on double tunneling induced transparency

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we propose and demonstrate that two dark polaritons can be generated in a microcavity that several periods of asymmetric triple-quantum wells are embedded in. They are created by the intracavity coherent effects based on tunneling induced transparency and can be switched by using an external laser. The group time delay of this system is calculated to show the slow dark polaritons. The results have potential applications in all-optical switching and buffering in nano-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anappara, A.A., Tredicucci, A., Biasiol, G., Sorba, L.: Electrical control of polariton coupling in intersubband microcavities. Appl. Phys. Lett. 87, 051105-1–051105-3 (2005)

    Article  ADS  Google Scholar 

  • Anappara, A.A., Tredicucci, A., Beltram, F., Biasiol, G., Sorba, L.: Tunnel-assisted manipulation of intersubband polaritons in asymmetric coupled quantum wells. Appl. Phys. Lett. 89, 171109-1–171109-3 (2006)

    Article  ADS  Google Scholar 

  • Auer, A., Burkard, G.: Entangled photons from the polariton vacuum in a switchable optical cavity. Phys. Rev. B 85, 235140-1–235140-10 (2012)

    Article  ADS  Google Scholar 

  • Ciuti, C., Carusotto, I.: Input-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters. Phys. Rev. A 74, 033811-1–033811-13 (2006)

    Article  ADS  Google Scholar 

  • Cristofolini, P., Christmann, G., Tsintzos, S.I., Deligeorgis, G., Konstantinidis, G., Hatzopoulos, Z., Savvidis, P.G., Baumberg, J.J.: Coupling quantum tunneling with cavity photons. Science 336, 704–707 (2012)

    Article  ADS  Google Scholar 

  • Faist, J., Capasso, F., Sirtori, C., West, K.W., Pfeiffer, L.N.: Controlling the sign of quantum interference by tunnelling from quantum wells. Nature (London) 390, 589–591 (1997)

    Article  ADS  Google Scholar 

  • Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  MATH  Google Scholar 

  • Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  • Gmachl, C., Hock, M., Ng, S.N., Chu, G., Cho, A.F.: Intersubband absorption at ~ 1.55 μm in well- and nodulation-doped GaN/AlGaN multiple quantum wells with superlattice barriers. Appl. Phys. Lett. 77, 3722–3724 (2000)

    Article  ADS  Google Scholar 

  • Günter, G., Anappara, A.A., Hees, J., Sell, A., Biasiol, G., Sorba, L., De Liberato, S., Ciuti, C., Tredicucci, A., Leitenstorfer, A., Huber, R.: Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009)

    Article  ADS  Google Scholar 

  • Harris, S.E.: Lasers without inversion: interference of lifetime-broadened reso-nances. Phys. Rev. Lett. 62, 1033–1036 (1989)

    Article  ADS  Google Scholar 

  • Hernandez, G., Zhang, J., Zhu, Y.: Vacuum Rabi splitting and intracavity dark state in a cavity-atom system. Phys. Rev. A 76, 053814-1–053814-4 (2007)

    Article  ADS  Google Scholar 

  • Hopfield, J.J.: Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958)

    Article  ADS  MATH  Google Scholar 

  • Huber, R., Anappara, A.A., Günter, G., Sell, A., Biasiol, G., Sorba, L., Tredicucci, A., De Liberato, S., Ciuti, C., Leitenstorfer, A.: How fast electrons and photons mix: sub-cycle switching of intersubband cavity polaritons. J. Phys. Conf. Ser. 193, 012060-1–012060-4 (2009)

    Article  Google Scholar 

  • Kavokin, A., Baumberg, J.J., Malpuech, G., Laussy, F.P.: Microcavities, Series on Semiconductor Science and Technology. Oxford University Press Inc., Oxford (2007)

    Google Scholar 

  • Langbein, W., Gislason, H., Hvam, J.M.: Phys. Rev. B 54(20), 14595–14603 (1996)

    Article  ADS  Google Scholar 

  • Liu, S., Yang, W.-X., Chuang, Y.-L., Chen, A.-X., Liu, A., Huang, Y., Lee, R.-K.: Enhanced four-wave mixing efficiency in four-subband semiconductor quantum wells via Fano-type interference. Opt. Express 22, 29179–29190 (2014)

    Article  ADS  Google Scholar 

  • Lu, X.-Y., Wu, J.: Three-mode entanglement via tunneling-induced interference in a coupled triple-semiconductor quantum-well structure. Phys. Rev. A 82, 012323-1–012323-8 (2010)

    ADS  Google Scholar 

  • Lukin, M.D., Fleischhauer, M., Scully, M.O., Velichansky, V.L.: Intracavity electromagnetically induced transparency. Opt. Lett. 23, 295–297 (1998)

    Article  ADS  Google Scholar 

  • Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  • Nikonov, D.E., Imamoglu, A., Butov, L.V., Schmidt, H.: Collective intersubband excitations in quantum wells: coulomb interaction versus subband dispersion. Phys. Rev. Lett. 79, 4633–4636 (1997)

    Article  ADS  Google Scholar 

  • Nikonov, D.E., Imamoglu, A., Scully, M.O.: Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion. Phys. Rev. B 59, 12212–12215 (1999)

    Article  ADS  Google Scholar 

  • Schmidt, H., Campman, K.L., Gossard, A.C., Imamoglu, A.: Tunneling induced transparency: Fano interference in intersubband transitions. Appl. Phys. Lett. 70, 3455–3457 (1997)

    Article  ADS  Google Scholar 

  • Serapiglia, G.B., Paspalakis, E., Sirtori, C., Vodopyanov, K.L., Phillips, C.C.: Laser-induced quantum coherence in a semiconductor quantum well. Phys. Rev. Lett. 84, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  • Smet, J.H., Peng, L.H., Hirayama, Y., Gonstad, C.G.: Electron intersubband transitions to 0.8 eV (1.55 μm) in InGaAs/AlAs single quantum wells. Appl. Phys. Lett. 64(8), 986–987 (1994)

    Article  ADS  Google Scholar 

  • Su, X.-M., Gao, J.-Y.: Optical switching based on transparency in a semiconductor double-quantum well. Phys. Lett. A 264, 346–349 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sun, H., Niu, Y., Li, R., Jin, S., Gong, S.: Tunneling- induced large cross-phase modulation in an asymmetric quantum well. Opt. Lett. 32, 2475–2477 (2007)

    Article  ADS  Google Scholar 

  • Todorov, Y., Andrews, A.M., Colombelli, R., De Liberato, S., Ciuti, C., Klang, P., Strasser, G., Sirtori, C.: Ultrastrong light-matter coupling regime with polariton dots. Phys. Rev. Lett. 105, 196402-1–196402-4 (2010)

    Article  ADS  Google Scholar 

  • Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006)

    Article  ADS  Google Scholar 

  • Wang, H., Goorskey, D.J., Burkett, W.H., Xiao, M.: Cavity-linewidth narrowing by means of electromagnetically induced transparency. Opt. Lett. 25, 1732–1734 (2000)

    Article  ADS  Google Scholar 

  • Wang, T., Li, C.L., Zhang, R., Zhuo, Z.C., Su, X.M.: Narrow dark polariton due to coupled coherence in a quantum well microcavity. In: Proceedings of SPIE 9671, AOPC: Advances in Laser Technology and Applications (SPIE 2015), pp. 96711 J–96711 J-7 (2015)

  • Wu, J.H., Gao, J.Y., Xu, J.H., Silvestri, L., Artoni, M., LaRocca, G.C., Bassani, F.: Ultrafast all optical switching via tunable Fano inter-ference. Phys. Rev. Lett. 95, 057401 (2005)

    Article  ADS  Google Scholar 

  • Yamamoto, Y., Tassone, F., Cao, C.: Semiconductor Cavity Quantum Electrodynamics. Springer, Berlin (2000)

    Google Scholar 

  • Zhang, J., Hernandez, G., Zhu, Y.: Slow light with cavity electromagnetically induced transparency. Opt. Lett. 33, 46–48 (2008)

    Article  ADS  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China (Grant No. 11174109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Mei Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, T., Zhuo, Z.C. et al. Two narrow dark polaritons in triple-well microcavity based on double tunneling induced transparency. Opt Quant Electron 49, 205 (2017). https://doi.org/10.1007/s11082-017-1047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1047-y

Keywords

Navigation