Skip to main content
Log in

Transverse structure optimization of distributed feedback and distributed Bragg reflector lasers with surface gratings

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Two figures of merit for single transverse mode operation and an accurate procedure for calculating the coupling coefficient in distributed feedback lasers with laterally-coupled ridge-waveguide surface grating structures and in distributed Bragg reflector lasers with etched-through-ridge-waveguide surface gratings are introduced. Based on the difference in optical confinement between the pumped and un-pumped regions in the transverse plane, the single transverse mode operation figures of merit are effective and easy to calculate, while the improved coupling coefficient calculation procedure gives experimentally confirmed better results than the conventional calculation approaches, particularly for surface gratings with variable refractive index in the grating areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agraval, G.P., Dutta, N.K.: Semiconductor Lasers. Springer, New York (1993)

    Google Scholar 

  • Alman, G.M., Molter, L.A., Shen, H., Dutta, M.: Refractive index approximations from linear perturbation theory for planar MQW waveguides. IEEE J. Quantum Electron. 28(3), 650–657 (1992)

    Article  ADS  Google Scholar 

  • Chen, C.H., Chen, L.H., Wang, Q.M.: Coupling coefficients of gain-coupled distributed feedback lasers with absorptive grating. Electron. Lett. 32(14), 1288–1290 (1996)

    Article  Google Scholar 

  • Choi, W.Y., Chen, J.C., Fonstad, C.G.: Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers. Jpn. J. Appl. Phys. 35(9R), 4654–4659 (1996)

    Article  ADS  Google Scholar 

  • Crosslight Software Inc: Crosslight Software|PICS3D (2005)

  • Dutta, N.K., Agrawal, G.: Semiconductor Lasers. Kluwer Academic, Boston (1993)

    Google Scholar 

  • Laakso, A., Dumitrescu, M., Pietilä, P., Suominen, M., Pessa, M.: Optimization studies of single-transverse-mode 980 nm ridge-waveguide lasers. Opt. Quantum Electron. 40(11–12), 853–861 (2008)

    Article  Google Scholar 

  • Millett, R.R., Hinzer, K., Hall, T.J., Schriemer, H.: Simulation analysis of higher order laterally-coupled distributed feedback lasers. IEEE J. Quantum Electron. 44(12), 1145–1151 (2008)

    Article  ADS  Google Scholar 

  • Mroziewicz, B., Bugajski, M., Nakwaski, W.: Physics of Semiconductor Lasers. Elsevier, Amsterdam (1991)

    Google Scholar 

  • Streifer, W., Scifres, D.R., Burnham, R.D.: Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers. IEEE J. Quantum Electron. 11(11), 867–873 (1975)

    Article  ADS  Google Scholar 

  • Wang, J., Tian, J.B., Cai, P.F., Xiong, B., Sun, C.Z., Luo, Y.: 1.55-/spl mu/m algainas-inp laterally coupled distributed feedback laser. IEEE Photonics Technol. Lett. 17(7), 1372–1374 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Topi Uusitalo.

Additional information

The research has been done within the European Space Agency ESA project Submegahertz Linewidth Laser for Fundamental Physics Missions (Contract No. 4000110645/13/NL/HB).

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices 2016.

Guest Edited by Yuh-Renn Wu, Weida Hu, Slawomir Sujecki, Silvano Donati, Matthias Auf der Maur and Mohamed Swillam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uusitalo, T., Virtanen, H. & Dumitrescu, M. Transverse structure optimization of distributed feedback and distributed Bragg reflector lasers with surface gratings. Opt Quant Electron 49, 206 (2017). https://doi.org/10.1007/s11082-017-1039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1039-y

Keywords

Navigation