Skip to main content
Log in

Mode Selection of a Lateral Waveguide for Single-Mode Operation of Lasers with a Distributed Bragg Reflector

  • CONTROL OVER LASER RADIATION PARAMETER
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The possibilities for mode selection in mesa-stripe lateral waveguides for single-mode operation of lasers with a surface distributed Bragg reflector (DBR) are theoretically investigated. The dependence of the mode discrimination of the TE00 and TE01 lateral modes on the parameters of the laser crystal (mesa-stripe width, mesa-groove depth, and DBR depth) is analyzed. An algorithm for selection of these parameters depending on the required generation spectral width for a given design of heterostructure is demonstrated. A possibility for an increase in the width of the emitting aperture with maintaining of the single-mode lasing is shown. In this case, the selection of lateral modes in narrow mesa-stripe waveguides is achieved due to the difference in the DBR reflection coefficients for the TE00 and TE01 modes at a given DBR length. The resulting increase in the aperture can be used to increase the optical power of the laser in the single-mode regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Qiu, P., Wu, B., Fu, P., Li, M., Xie, Y., and Kan, Q., IEEE Photon. J., 2021, vol. 13, p. 4.

    Google Scholar 

  2. Tronciu, V., Werner, N., Wenzel, H., and Wunsche, H.-J., IEEE J. Quantum Electron., 2021, vol. 57, p. 1.

    Article  Google Scholar 

  3. Zolotarev, V.V., Leshko, A.Y., Shamakhov, V.V., Nikolaev, D.N., Golovin, V.S., Slipchenko, S.O., and Pikhtin, N.A., Semicond. Sci. Technol., 2020, vol. 35, p. 015009.

  4. Shashkin, I.S., Leshko, A.Yu., Nikolaev, D.N., et al., Semiconductors, 2020, vol. 54, p. 489.

    Article  ADS  Google Scholar 

  5. Shashkin, I.S., Leshko, A.Yu., Nikolaev, D.N., et al., Semiconductors, 2020, vol. 54, p. 484

    Article  ADS  Google Scholar 

  6. Shashkin, I.S., Leshko, A.Yu., Shamakhov, V.V., et al., Tech. Phys. Lett., 2021, vol. 47, p. 368

    Article  ADS  Google Scholar 

  7. Shashkin, I.S., Leshko, A.Yu., Shamakhov, V.V., et al., Semiconductors, 2021, vol. 55, p. 455

    Article  ADS  Google Scholar 

  8. Slipchenko, S.O., Shashkin, I.S., Veselov, D.A., Kriychkov, V.A., Kazakova, A.E., Leshko, A.Y., Shamakhov, V.V., Nikolaev, D.N., and Pikhtin, N.A., J. Light. Technol., 2022, vol. 40, p. 2933.

    Article  ADS  Google Scholar 

  9. Paschotta, R., Nilsson, J., Tropper, A.C., and Hanna, D.C., IEEE J. Quantum Electron., 1997, vol. 33, p. 1049.

    Article  ADS  Google Scholar 

  10. Koechner, W., Solid-State Laser Engineering, New York: Springer, 2006.

    MATH  Google Scholar 

  11. Zlatanovic, S., Park, J.S., Moro, S., Boggio, J.M.C., Divliansky, I.B., Alic, N., and Mookherjea, S., Radic S. Nat. Photonics, 2010, vol. 4, p. 561.

    Article  ADS  Google Scholar 

  12. Amiri, I.S., Rashed, A.N.Z., Mohammed, A.E.A., El-Din, E.S., and Yupapin, P., J. Opt. Commun., 2019, vol. 44, no. 1. https://doi.org/10.1515/joc-2019-0061

  13. Shibuya, K., Podzorov, A., Matsuhama, M., Nishimura, K., and Magari, M., Meas. Sci. Technol., 2020, vol. 32, p. 035201.

  14. Podoskin, A.A., Golovin, V.S., Gavrina, P.S., Veselov, D.A., Zolotarev, V.V., Shamakhov, V.V., Nikolaev, D.N., Leshko, A.Yu., Slipchenko, S.O., Pikhtin, N.A., Kopév, P.S., Appl. Opt., 2019, vol. 58, p. 9089.

    Article  ADS  Google Scholar 

  15. Podoskin, A.A., Golovin, V.S., Gavrina, P.S., Veselov, D.A., Zolotarev, V.V., Shamakhov, V.V., Nikolaev, D.N., Shashkin, I.S., Slipchenko, S.O., Pikhtin, N.A., and Kopév, P.S., J. Opt. Soc. Am. B, 2020, vol. 37, p. 784.

    Article  ADS  Google Scholar 

  16. Gourevitch, A., Venus, G., Smirnov, V., Hostutler, D.A., and Glebov, L., Opt. Lett., 2008, vol. 33, p. 702.

    Article  ADS  Google Scholar 

  17. Ivanov, S.A., Nikonorov, N.V., Ignat’ev A.I., Zolotarev, V.V., Lubyanskii, Ya.V., Pikhtin N.A., and Tarasov, I.S., Semiconductors, 2016, vol. 50, p. 819.

    Article  ADS  Google Scholar 

  18. Fan, T.Y. and Byer, R.L., IEEE J. Quantum Electron., 1988, vol. 24, p. 895.

    Article  ADS  Google Scholar 

  19. Fricke, J., Decker, J., Maaßdorf, A., Wenzel, H., Erbert, G., Knigge, A., and Crump, P., Semicond. Sci. Technol., 2017, vol. 32, p. 075012.

  20. Knigge, A., Klehr, A., Wenzel, H., Zeghuzi, A., Fricke, J., Maaßdorf, A., Liero, A., and Tränkle, G., Phys. Status Sol. Appl. Mater. Sci., 2018, vol. 215, p. 1700439.

  21. Li, B., Gao, J., Yu, A., Luo, S., Xiong, D., Wang, X., and Zuo, D., Opt. Laser Technol., 2017, vol. 96, p. 176.

    Article  ADS  Google Scholar 

  22. Zolotarev, V.V., Leshko, A.Yu., Pikhtin N.A., et al., Quantum Electron., 2015, vol. 45, p. 1091

    Article  ADS  Google Scholar 

  23. Decker, J., Crump, P., Fricke, J., Maassdorf, A., Erbert, G., and Trankle, G., IEEE Photon. Technol. Lett., 2014, vol. 26, p. 829.

    Article  ADS  Google Scholar 

  24. Zolotarev, V.V., Leshko, A.Yu., Lyutetskii, A.V., Nikolaev, D.N., Pikhtin, N.A., Podoskin, A.A., Slipchenko, S.O., Sokolova, Z.N., Shamakhov, V.V., Arsent’ev, I.N., Vavilova, L.S., Bakhvalov, K.V., and Tarasov, I.S., Semiconductors, 2013, vol. 47, p. 122.

    Article  ADS  Google Scholar 

  25. Kogelnik, H. and Shank, C.V., J. Appl. Phys., 1972, vol. 43, p. 2327.

    Article  ADS  Google Scholar 

  26. Kogelnik, H. and Shank, C.V., Appl. Phys. Lett., 1971, vol. 18, p. 152.

    Article  ADS  Google Scholar 

  27. Agrawal, G.P. and Dutta, N.K., Semiconductor Lasers, New York: Springer, 1993.

    Book  Google Scholar 

  28. Leshko, A.Yu., Lyutetskii, A.V., Pikhtin, N.A., Slipchenko, S.O., Sokolova, Z.N., Fetisova, N.V., Golikova, E.G., Ryaboshtan, Yu.A., and Tarasov, I.S., Semiconductors, 2002, vol. 36, p. 1308.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-79-30072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zolotarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotarev, V.V., Rizaev, A.E., Lutetskiy, A.V. et al. Mode Selection of a Lateral Waveguide for Single-Mode Operation of Lasers with a Distributed Bragg Reflector. Bull. Lebedev Phys. Inst. 50 (Suppl 2), S154–S162 (2023). https://doi.org/10.3103/S1068335623140178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623140178

Keywords:

Navigation