Skip to main content
Log in

Optically probing the interaction between monolayer MoS2 and single-wall carbon nanotube

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Owing to outstandingly tunable optoelectronic properties, hybrid materials consisting of atomic scale thickness of two dimensional (2D) transition metal dichalcogenides (TMDs) and one dimensional (1D) nanowires have been attracting steady interests over the last several years. In this research for the first time we report optically probing the interaction between monolayer MoS2 and single-wall carbon nanotube (SWCNT). By using Raman and photoluminescence measurements, we found the charge transfer between MoS2 and SWCNT is sensitive to the intensity of light field. We also demonstrate that SWCNT acts as p-type dopants at physical contact with monolayer MoS2. Our study gives new insight into the interaction between monolayer MoS2 and SWCNT, which may allow new phenomena and ideas for novel low dimensional hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anantram, M.P., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507–561 (2006). doi:10.1088/0034-4885/69/3/r01

    Article  ADS  Google Scholar 

  • Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.-J., Gorbachev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Neto, A.H.C., Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013). doi:10.1126/science.1235547

    Article  ADS  Google Scholar 

  • Cai, Y., Yang, X., Liang, T., Dai, L., Ma, L., Huang, G.W., Chen, W.X., Chen, H.Z., Su, H.X., Xu, M.S.: Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high-performance hydrogen evolution. Nanotechnology 25(46), 465401 (2014). doi:10.1088/0957-4484/25/46/465401

    Article  ADS  Google Scholar 

  • Chakraborty, B., Bera, A., Muthu, D.V.S., Bhowmick, S., Waghmare, U.V., Sood, A.K.: Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85(16), 161403 (2012). doi:10.1103/PhysRevB.85.161403

    Article  ADS  Google Scholar 

  • Gong, Y., Lei, S., Ye, G., Li, B., He, Y., Keyshar, K., Zhang, X., Wang, Q., Lou, J., Liu, Z., Vajtai, R., Zhou, W., Ajayan, P.M.: Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15(9), 6135–6141 (2015). doi:10.1021/acs.nanolett.5b02423

    Article  ADS  Google Scholar 

  • Hsiao, Y.-J., Fang, T.-H., Ji, L.-W., Yang, B.-Y.: Red-shift effect and sensitive responsivity of MoS2/ZnO flexible photodetectors. Nanoscale Res. Lett. 10, 443 (2015). doi:10.1186/s11671-015-1151-5

    Article  ADS  Google Scholar 

  • Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C.: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). doi:10.1021/nn500064s

    Article  Google Scholar 

  • Jorio, A., Saito, R., Dresselhaus, G., Dresselhaus, M.S. (eds.): Raman Spectroscopy in Graphene Related Systems. Wiley-VCH Verlag GmbH & Co, Weinheim (2011)

    Google Scholar 

  • Keshavarzian, P.: Novel and general carbon nanotube FET-based circuit designs to implement all of the 3(9) ternary functions without mathematical operations. Microelectron. J. 44(9), 794–801 (2013). doi:10.1016/j.mejo.2013.06.002

    Article  Google Scholar 

  • Kim, Y.C., Park, S.H., Lee, C.S., Chung, T.W., Cho, E., Chung, D.S., Han, I.T.: A 46-inch diagonal carbon nanotube field emission backlight for liquid crystal display. Carbon 91, 304–310 (2015). doi:10.1016/j.carbon.2015.04.093

    Article  Google Scholar 

  • Kufer, D., Nikitskiy, I., Lasanta, T., Navickaite, G., Koppens, F.H.L., Konstantatos, G.: Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27(1), 176–180 (2015). doi:10.1002/adma.201402471

    Article  Google Scholar 

  • Latini, S., Olsen, T., Thygesen, K.S.: Excitons in van der Waals heterostructures: the important role of dielectric screening. Phys. Rev. B 92(24), 245123 (2015). doi:10.1103/PhysRevB.92.245123

    Article  ADS  Google Scholar 

  • Lee, G.-H., Yu, Y.-J., Cui, X., Petrone, N., Lee, C.-H., Choi, M.S., Lee, D.-Y., Lee, C., Yoo, W.J., Watanabe, K., Taniguchi, T., Nuckolls, C., Kim, P., Hone, J.: Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). doi:10.1021/nn402954e

    Article  Google Scholar 

  • Lin, Z.-D., Young, S.-J., Chang, S.-J.: Carbon nanotube thin films functionalized via loading of au nanoclusters for flexible gas sensors devices. IEEE Trans. Electron Devices 63(1), 476–480 (2016). doi:10.1109/ted.2015.2504105

    Article  ADS  Google Scholar 

  • Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). doi:10.1103/PhysRevLett.105.136805

  • Molina-Sanchez, A., Wirtz, L.: Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84(15), 155413 (2011). doi:10.1103/PhysRevB.84.155413

    Article  ADS  Google Scholar 

  • Murawala, A.P., Loh, T.A.J., Chua, D.H.C.: Synthesis of MoS2 nano-petal forest supported on carbon nanotubes for enhanced field emission performance. J. Appl. Phys. 116(11), 114305 (2014). doi:10.1063/1.4895834

    Article  ADS  Google Scholar 

  • Prins, F., Goodman, A.J., Tisdale, W.A.: Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett. 14(11), 6087–6091 (2014). doi:10.1021/nl5019386

    Article  ADS  Google Scholar 

  • Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). doi:10.1038/nnano.2010.279

    Article  ADS  Google Scholar 

  • Ramasubramaniam, A.: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86(11), 115409 (2012). doi:10.1103/PhysRevB.86.115409

    Article  ADS  Google Scholar 

  • Ruppert, C., Aslan, O.B., Heinz, T.F.: Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231–6236 (2014). doi:10.1021/nl502557g

    Article  ADS  Google Scholar 

  • Sanchez Lopez, O., Llado, E.A., Koman, V., Morral, A.F., Radenovic, A., Andras, K.: Light generation and harvesting in a van der Waals heterostrucutre. ACS Nano 8(3), 3042–3048 (2014)

    Article  Google Scholar 

  • Shelke, N.T., Karche, B.R.: Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. J. Alloys Compd. 653, 298–303 (2015). doi:10.1016/j.jallcom.2015.08.255

    Article  Google Scholar 

  • Shi, H., Yan, R., Bertolazzi, S., Brivio, J., Gao, B., Kis, A., Jena, D., Xing, H.G., Huang, L.: Exciton dynamics in suspended mono layer and few-layer MoS2 2D crystals. ACS Nano 7(2), 1072–1080 (2013). doi:10.1021/nn303973r

    Article  Google Scholar 

  • Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). doi:10.1021/nl903868w

    Article  ADS  Google Scholar 

  • Su, W., Kumar, N., Dai, N., Roy, D.: Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 8(12), 3878–3996 (2015)

    Article  Google Scholar 

  • Sundaram, R.S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A.C., Avouris, P., Steiner, M.: Electroluminescence in single layer MoS2. Nano Lett. 13(4), 1416–1421 (2013). doi:10.1021/nl400516a

    Article  ADS  Google Scholar 

  • Talla, J.A., Salman, S.A.: Electronic structure tuning and band gap engineering of carbon nanotubes: density functional theory. Nanosci. Nanotechnol. Lett. 7(5), 381–386 (2015). doi:10.1166/nnl.2015.1956

    Article  Google Scholar 

  • Tongay, S., Zhou, J., Ataca, C., Liu, J., Kang, J.S., Matthews, T.S., You, L., Li, J., Grossman, J.C., Wu, J.: Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13(6), 2831–2836 (2013). doi:10.1021/nl4011172

    Article  ADS  Google Scholar 

  • Tsang, J.C., Freitag, M., Perebeinos, V., Liu, J., Avouris, P.: Doping and phonon renormalization in carbon nanotubes. Nat. Nanotechnol. 2(11), 725–730 (2007). doi:10.1038/nnano.2007.321

    Article  ADS  Google Scholar 

  • Wang, J.Z., Lu, L., Lotya, M., Coleman, J.N., Chou, S.L., Liu, H.K., Minett, A.I., Chen, J.: Development of MoS2–CNT composite thin film from layered MoS2 for lithium batteries. Adv. Energy Mater. 3(6), 798–805 (2013). doi:10.1002/aenm.201201000

    Article  Google Scholar 

  • Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). doi:10.1021/nn2024557

    Article  Google Scholar 

  • Yuan, X., Tang, L., Liu, S., Wang, P., Chen, Z., Zhang, C., Liu, Y., Wang, W., Zou, Y., Liu, C., Guo, N., Zou, J., Zhou, P., Hu, W., Xiu, F.: Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 15(5), 3571–3577 (2015a). doi:10.1021/acs.nanolett.5b01058

    Article  ADS  Google Scholar 

  • Yuan, X., Tang, L., Wang, P., Chen, Z., Zou, Y., Su, X., Zhang, C., Liu, Y., Wang, W., Liu, C., Chen, F., Zou, J., Zhou, P., Hu, W., Xiu, F.: Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe. Nano Res. 8(10), 3332–3341 (2015b). doi:10.1007/s12274-015-0833-8

    Article  Google Scholar 

  • Zhang, K., Zhang, Y., Zhang, T., Dong, W., Wei, T., Sun, Y., Chen, X., Shen, G., Dai, N.: Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. Nano Res. 8(3), 743–750 (2015). doi:10.1007/s12274-014-0557-1

    Article  Google Scholar 

  • Zhang, X.Q., Li, X.N., Liang, J.W., Zhu, Y.C., Qian, Y.T.: Synthesis of MoS2@C nanotubes via the Kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 12(18), 2484–2491 (2016). doi:10.1002/smll.201600043

    Article  Google Scholar 

  • Zhao, W.J., Ghorannevis, Z., Chu, L.Q., Toh, M.L., Kloc, C., Tan, P.H., Eda, G.: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013). doi:10.1021/nn305275h

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Natural Sciences Foundation of China (Grant No: 61306115, 61178039 and 21503169) and China Postdoctoral Science Foundation (Granted No. 2013M541807). L. Y. acknowledges the support from Jiangsu Provincial Natural Science Foundation (Grant No. BK20140405), and XJTLU research development fund Grant No. PGRS-13-01-03 and RDF-14-02-42).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weitao Su or Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., Jin, L., Huo, D. et al. Optically probing the interaction between monolayer MoS2 and single-wall carbon nanotube. Opt Quant Electron 49, 197 (2017). https://doi.org/10.1007/s11082-017-1034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1034-3

Keywords

Navigation