Skip to main content
Log in

Static (hyper)polarizabilities and absorption spectra of single [2.2]p-cyclophane NO2/NH2 substituted from DFT methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We explore the behavior of the average of polarizability (< α >), total first hyperpolarizability (βtotal) and average of second hyperpolarizability (< γ >) for single A/D (-NO2/-NH2) substituted [2.2]p-cyclophane. The geometric optimization was carried out at HF and DFT (SVWN, PBE, B3LYP, PBE0, BHHLYP and CAM-B3LYP) level, in gas phase, using the 6-31 + G(d,p) basis set. The static tensor components of < α > and βtotal, in gas phase, were calculated using Field Finite (FF) methods with electric field intensities of E = ± 0.001 a.u. in each (x,y,z) axis direction. The substitution of A/D groups in positions 7–15 (structure 2 in Fig. 1) produced an increment in the < α > values. Regardless of the A/D positions, the < α > values showed not significant changes at all theory level. < α > DFT results are overestimated up to 20%, if HF values are taken into account, being SVWN and PBE functionals those that give the main deviation. There are monotonic and progressive behaviors of βtotal for the 1–5 structure change as expected by orientation of the dipolar moment in both aromatic rings. With respect to the performance of DFT functionals, < γ > and βtotal results are significantly overestimated if HF values are taken into account. In fact, the relative percentage error of βtotal at DFT level with respect to HF ones is between 58 and 132%, being PBE functional those that give the main deviation. The close overlap of the orbitals between the rings facilitates chromophore delocalization to account for the observation of high βtotal in these compounds. Therefore, we expected that the contribution by coupling of the transition moment between first and higher excited states should be lie much higher due to phane effect than that for ring units.

a Single [2.2]p-cyclophane core molecule. b Geometric parameters of interest c Highlights for the 4, 7, 12, and 15 positions, which are substituted by (-NO2/-NH2) acceptor/donor pair

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6171 (1999)

    Article  ADS  Google Scholar 

  • Bachrach, S.M.: DFT study of [2.2]-, [3.3]-, and [4.4]paracyclophanes: strain energy, conformations, and rotational barriers. J. Phys. Chem. A. 115, 2396–2401 (2011)

    Article  Google Scholar 

  • Bartholomew, G.P., Bazan, G.C.: Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc. Chem. Res. 34, 30–39 (2001)

    Article  Google Scholar 

  • Bartholomew, G.P., Ledoux, I., Mukamel, S., Bazan, G.C., Zyss, J.: Three-dimensional nonlinear optical chromophores based on through-space delocalization. J. Am. Chem. Soc. 124, 13480–13485 (2002)

    Article  Google Scholar 

  • Bartholomew, G.P., Rumi, M., Pond, S.J.K., Perry, J.W., Tretiak, S., Bazan, G.C.: Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane. J. Am. Chem. Soc. 126, 11529–11542 (2004)

    Article  Google Scholar 

  • Bazan, G.C.: Novel organic materials through control of multichromophore interactions. J. Org. Chem. 72, 8615–8635 (2007)

    Article  Google Scholar 

  • Bazan, G.C., Oldham, W.J., Lachicotte, R.J., Tretiak, S., Chernyak, V., Mukamel, S.: Stilbenoid dimers: dissection of a paracyclophane chromophore. J. Am. Chem. Soc. 120, 9188–9204 (1998)

    Article  Google Scholar 

  • Becke, A.D.: Density-functional thermochemistry. III. The role of exact Exchange. J. Chem. Phys. 98, 5648–5653 (1993)

    Article  ADS  Google Scholar 

  • Brédas, J., Adant, C., Tackx, P., Persoons, A.: Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994)

    Article  Google Scholar 

  • Chang, Y.J., Chow, T.J.: Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron 65, 4726–4734 (2009)

    Article  Google Scholar 

  • Chang, Y.J., Watanabe, M., Chou, P.T., Chow, T.J.: [2.2]Paracyclophane as a bridging unit in the design of organic dyes for sensitized solar cells. Chem. Commun. 48, 726–729 (2012)

    Article  Google Scholar 

  • Elacqua, E., MacGillivray, L.R.: From the decks to the bridges: optoelectronics in [2.2]paracyclophane chemistry. Eur. J. Org. Chem. 2010, 6883–6894 (2010)

    Article  Google Scholar 

  • Ernzerhof, M., Scuseria, G.E.: Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5037 (1999)

    Article  ADS  Google Scholar 

  • Ferrighi, L., Frediani, L., Fossgaard, S., Ruud, K.: Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation. J. Chem. Phys. 127, 244103 (2007)

    Article  ADS  Google Scholar 

  • Forrest, S., Thompsom, M.: Introduction: organic electronics and optoelectronics. Chem. Rev. 107, 923–925 (2007)

    Article  Google Scholar 

  • Gibson, S.E., Knight, J.D.: 2.2]Paracyclophane derivatives in asymmetric catalysis. Org. Biomol. Chem. 1, 1256–1269 (2003)

    Article  Google Scholar 

  • Grimme, S.: On the importance of electron correlation effects for the π–π interactions in cyclophanes. Chem. Eur. J. 10, 3423–3429 (2004)

    Article  Google Scholar 

  • Hahn, S., Kim, D., Cho, M.: Nonlinear optical properties of the linear quadrupolar molecule:structure−function relationship based on a three-state model. J. Phys. Chem. 103, 8221–8229 (1999)

    Article  Google Scholar 

  • Hong, J.W., Benmansour, H., Bazan, G.C.: Through-space delocalized water-soluble paracyclophane bichromophores: new fluorescent optical reporters. Chem. Eur. J. 9, 3186–3192 (2003)

    Article  Google Scholar 

  • Hope, H., Bernstein, J., Trueblood, K.N.: The crystal and molecular structure of 1,1,2,2,9,9,10,10-octafluoro-[2,2]paracyclophane and a reinvestigation of the structure of [2,2]paracyclophane. Acta Crystallogr. Sect. B 28, 1733–1743 (1972)

    Article  Google Scholar 

  • Kamada, K., Ueda, M., Nagao, H., Tawa, K., Sugino, T., Shmizu, Y., Ohta, K.: Molecular design for organic nonlinear optics: polarizability and hyperpolarizabilities of furan homologues investigated by ab initio molecular orbital method. J. Phys. Chem. A 104, 4723–4734 (2000)

    Article  Google Scholar 

  • Kurtz, H.A., Stewart, J.J.P., Dieter, K.M.: Calculation of the nonlinear optical properties of molecules. J. Comput. Chem. 11, 82–87 (1990)

    Article  Google Scholar 

  • Lee, Jin Yong: Collective electronic oscillator method: application to conjugated organic molecules. Bull. Korean Chem. Soc. 24, 780–784 (2003)

    Article  Google Scholar 

  • Lee, C.T., Yang, R.G., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 37, 785–789 (1988)

    Article  ADS  Google Scholar 

  • Lee, W.-H., Lee, H., Kim, J.-A., Choi, J.-H., Cho, M., Jeon, S.-J., Cho, B.R.: Two-photon absorption and nonlinear optical properties of octupolar molecules. J. Am. Chem. Soc. 123, 10658–10667 (2001)

    Article  Google Scholar 

  • Leung, M.-K., Viswanath, M.V., Chou, P.-T., Pu, S.-C., Lin, H.-C., Jin, B.-Y.: The phane properties of anti-[2.2](1,4)biphenylenophane. J. Org. Chem. 70, 3560–3568 (2005)

    Article  Google Scholar 

  • Liu, Y.F., Ren, X.F., Zou, L.Y., Ren, A.M., Feng, J.K., Sun, C.C.: Theoretical study on photophysical properties of 2,1,3 benzothiadiazole-based star-shaped molecules. Theor. Chem. Acc. 129, 833–845 (2011)

    Article  Google Scholar 

  • Marcano, E., Squitieri, E., Murgich, J., Soscún, H.: Theoretical investigation of the static (dynamic) polarizability and second hyperpolarizability of DAAD quadrupolar push–pull molecules. A comparison among HF (TD-HF), DFT (TD-B3LYP), and MP2 (TD-MP2) methods. Comput. Theor. Chem. 985, 72–79 (2012)

    Article  Google Scholar 

  • Maroulis, G.: On the accurate theoretical determination of the static hyperpolarizability of trans-butadiene. J. Chem. Phys. 111, 583 (1999)

    Article  ADS  Google Scholar 

  • Moorthy, J.N., Mandal, S., Kumar, A.: Photochromism of novel chromenes constrained to be part of [2.2]paracyclophane: remarkable ‘phane’ effects on the colored o-quinonoid intermediates. New J. Chem. 37, 82–88 (2013)

    Article  Google Scholar 

  • Morisaki, Y., Chujo, Y.: Synthesis of π-stacked polymers on the basis of [2.2]paracyclophane. Bull. Chem. Soc. Jpn. 82, 1070–1082 (2009)

    Article  Google Scholar 

  • Nalwa, H.S., Miyata, S.: Nonlinear Optics of Organic Molecules and Polymers. CRC Press, New York (1997)

    Google Scholar 

  • Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar 

  • Pathenopoulos, D.A., Rentzepis, P.M.: Three-dimensional optical storage memory. Science 245, 843–845 (1989)

    Article  ADS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  • Sahraoui, B., Rivoire, G.: Degenerate four-wave mixing in absorbing isotropic media. Optics Communications. 138, 109–112 (1997)

    Article  ADS  Google Scholar 

  • Sahraoui, B., Nguyen Phu, X., Sallé, M., Gorgues, A.: Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N′-dimethylaniline tetrathiafulvalene derivatives. Opt. Lett. 23, 1811–1813 (1998a)

    Article  ADS  Google Scholar 

  • Sahraoui, B., Rivoire, G., Terkia-Derdra, N., Sallé, M., Zaremba, J.: Third-order nonlinear optical properties of new bisdithiafulvenyl-substituted tetrathiafulvalene. J. Opt. Soc. Am. B 15, 923–928 (1998b)

    Article  ADS  Google Scholar 

  • Shelton, D.P., Rice, J.E.: Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chem. Rev. 94, 3–29 (1994)

    Article  Google Scholar 

  • Shirai, S., Iwata, S., Maegawa, Y., Tani, T., Inagaki, S.: Ab initio molecular orbital study on the excited states of [2.2]-, [3.3]-, and siloxane-bridged paracyclophanes. J. Phys. Chem. A 116, 10194–10202 (2012)

    Article  Google Scholar 

  • Slater, J.C.: A simplification of the Hartree-Fock method. Phys. Rev. 81, 385–390 (1951)

    Article  ADS  MATH  Google Scholar 

  • Squitieri, E.: Contributions of anharmonics to the nuclear relaxation second hyperpolarizability of a push–pull polyene. J. Phys. Org. Chem. 17, 131–137 (2004)

    Article  Google Scholar 

  • Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  • Tu, Y., Luo, Y., Agren, H.: Molecular dynamics simulations applied to electric field induced second harmonic generation in dipolar chromophore solutions. J. Phys. Chem. B 110, 8971–8977 (2006)

    Article  Google Scholar 

  • Vosco, S.H., Wilk, J., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980)

    Article  ADS  Google Scholar 

  • Yanai, T., Tew, D., Handy, N.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  ADS  Google Scholar 

  • Zhao, Y., Truhlar, D.G.: A density functional that accounts for medium-range correlation energies in organic chemistry. Org. Lett. 8, 5753–5755 (2006)

    Article  Google Scholar 

  • Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  Google Scholar 

  • Zhou, W., Kuebler, S.M., Braun, K.L., Yu, T., Cammack, J.K., Ober, C.K., Marder, S.R.: An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296, 1106–1109 (2002)

    Article  ADS  Google Scholar 

  • Zyss, J., Ledoux, I., Volkov, S., Chernyak, V., Mukamel, S., Bartholomew, G.P., Bazan, G.C.: Through-space charge transfer and nonlinear optical properties of substituted paracyclophane. J. Am. Chem. Soc. 122, 11956–11962 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support by Fondo Nacional de Ciencia, Tecnología e Innovación (FONACIT) through grant PEI-1852 and Centro de Investigaciones en Ciencias Naturales (CICNAT) through project N° 12-073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emildo Marcano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcano, E., Alayón, J. & Cisneros, J.G. Static (hyper)polarizabilities and absorption spectra of single [2.2]p-cyclophane NO2/NH2 substituted from DFT methods. Opt Quant Electron 49, 189 (2017). https://doi.org/10.1007/s11082-017-1023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1023-6

Keywords

Navigation