Skip to main content
Log in

Photocurrent enhancement of heat treated CdSe-sensitized titania nanotube photoelectrode

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The self-organized titania nanotube arrays (NTAs) fabricated by anodisation has gained enormous interest due to its high spatial orientation, excellent charge transfer structure, and large internal surface area; all are crucial properties influencing the absorption and propagation of light. In this study, a composite material, CdSe nanoparticle/TiO2 nanotube arrays (CdSe/TiO2 NTAs) were assembled through the insertion of CdSe nanoparticles onto the anodized TiO2 nanotube arrays via electrochemical deposition. The annealing temperature of CdSe/TiO2 NTAs was varied from 200 to 350 °C and was found to play an important role in controlling the formation of CdSe nanoparticles on TiO2 NTAs. Characterizations of the films were performed by using field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, high resolution transmission electron microscopes, X-ray diffractometry and UV–visible diffuse reflectance spectroscopy. The transient photocurrent was examined in a three-electrode system under halogen illumination by using the prepared film as the photoanode. It was found that the CdSe nanoparticles were susceptible to spread through electrochemical deposition and formed on the nanotubes by annealing in nitrogen atmosphere. The increment in annealing temperature has resulted in greater amount of CdSe loaded onto TiO2 nanotube arrays. Therefore, a suitable annealing temperature can enhance the particle interaction, leading to considerable improvement in PEC performance. The sensitized CdSe/TiO2 NTAs annealed at 250 °C displayed 84 folds improvement in photoconversion efficiency than that of bare TiO2 NTAs counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ayal, A.K., Zainal, Z., Lim, H.-N., Talib, Z.A., Lim, Y.-C., Chang, S.-K., Samsudin, N.A., Holi, A.M., Amin, W.N.M.: Electrochemical deposition of CdSe-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance for solar cell application. J. Mater. Sci. Mater. Electron. 27, 5204–5210 (2016)

    Article  Google Scholar 

  • Bang, J.H., Kamat, P.V.: Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv. Funct. Mater. 20, 1970–1976 (2010)

    Article  Google Scholar 

  • Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T.L., Yates, J.T.: Light-induced charge separation in anatase TiO2 particles. J. Phys. Chem. B. 109, 6061–6068 (2005)

    Article  Google Scholar 

  • Brown, P., Takechi, K., Kamat, P.V.: Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J. Phys. Chem. C 112, 4776–4782 (2008)

    Article  Google Scholar 

  • Chen, C., Xie, Y., Ali, G., Yoo, S.H., Cho, S.O.: Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer. Nanoscale Res. Lett. 6, 1–9 (2011)

    ADS  Google Scholar 

  • Chi, C., Liau, S., Lee, Y.: The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical. Nanotechnology 21, 025202–025208 (2010)

    Article  ADS  Google Scholar 

  • Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn, pp. 78–103. Addison Wesley, Boston (1987)

    Google Scholar 

  • Fitzmorris, R.C., Larsen, G., Wheeler, D.A., Zhao, Y., Zhang, J.Z.: Ultrafast charge transfer dynamics in Polycrystalline CdSe/TiO2 nanorods prepared by oblique angle co-deposition ultrafast charge transfer dynamics in polycrystalline CdSe/TiO2 nanorods prepared by oblique angle co-deposition. J. Phys. Chem. C 116, 5033–5041 (2012)

    Article  Google Scholar 

  • Gan, J., Zhai, T., Lu, X., Xie, S., Mao, Y., Tong, Y.: Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs. Mater. Res. Bull. 47, 580–585 (2012)

    Article  Google Scholar 

  • Goodey, A.P., Eichfeld, S.M., Lew, K.-K., Redwing, J.M., Mallouk, T.E.: Silicon nanowire array photelectrochemical cells. J. Am. Chem. Soc. 129, 12344–12345 (2007)

    Article  Google Scholar 

  • Hensel, J., Wang, G., Li, Y., Zhang, J.Z.: Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett. 10, 478–483 (2010)

    Article  ADS  Google Scholar 

  • Hossain, M.F., Biswas, S., Zhang, Z.H., Takahashi, T.: Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. J. Photochem. Photobiol. A Chem. 217, 68–75 (2011)

    Article  Google Scholar 

  • Hu, X., Li, G., Yu, J.C.: Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26, 3031–3039 (2010)

    Article  Google Scholar 

  • Huang, J., Zhang, K., Lai, Y.: Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review. Int. J. Photoenergy 2013, 1–19 (2013)

    Google Scholar 

  • Ikram, A., Sahai, S., Rai, S., Dass, S., Shrivastav, R., Satsangi, V.R.: Synergistic effect of CdSe quantum dots on photoelectrochemical response of electrodeposited α-Fe2O3 films. J. Power Sources 267, 664–672 (2014)

    Article  ADS  Google Scholar 

  • Kathirvel, S., Su, C., Hsu, C., Ho, S.Y., Chen, B.R., Li, W.R.: Effect of open- and close-ended TiO2 nanotube arrays on transparent conducting substrates for dye-sensitized solar cells application. J. Nanoparticle Res. 16, 1–14 (2014)

    Article  Google Scholar 

  • Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V.: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Article  Google Scholar 

  • Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  Google Scholar 

  • Lana-Villarreal, T., Shen, Q., Toyoda, T., Go, R., Guijarro, N.: Go mez, R., Gomez, R.: sensitization of Titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photoelectrochemical and carrier dynamics studies. J. Phys. Chem. C 114, 21928–21937 (2010)

    Article  Google Scholar 

  • Larsen, G.K., Fitzmorris, B.C., Longo, C., Zhang, J.Z., Zhao, Y.: Nanostructured homogenous CdSe–TiO2 composite visible light photoanodes fabricated by oblique angle codeposition. J. Mater. Chem. 22, 14205–14218 (2012)

    Article  Google Scholar 

  • Leschkies, K.S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J.E., Carter, C.B., Kortshagen, U.R., Norris, D.J., Aydil, E.S.: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)

    Article  ADS  Google Scholar 

  • Li, X., Teng, W., Zhao, Q., Wang, L.: Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays. J. Nanoparticle Res. 13, 6813–6820 (2011)

    Article  ADS  Google Scholar 

  • Lim, Y.C., Zainal, Z., Hussein, M.Z., Tan, W.T.: Preparation and Characterization of Nanostructured TiO2 via Electrochemical Anodization in Aqueous Ammonium Fluoride. Malays. J. Chem. 11, 129–135 (2009)

    Google Scholar 

  • Lim, Y.C., Zainal, Z., Hussein, M.Z., Tee, T.W.: Investigation on optical and photoelectrochemical properties of self-assembled titania nanotube arrays prepared by anodization. Malays. J. Anal. Sci. 20, 121–130 (2016)

    Article  Google Scholar 

  • Liu, L., Hensel, J., Fitzmorris, R.C., Li, Y., Zhang, J.Z.: Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures. J. Phys. Chem. Lett. 1, 155–160 (2010)

    Article  Google Scholar 

  • Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)

    Article  Google Scholar 

  • Osterloh, F.E.: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013)

    Article  Google Scholar 

  • Robel, I., Subramanian, V., Kuno, M., Kamat, P.: V: quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)

    Article  Google Scholar 

  • Roy, P., Berger, S., Schmuki, P.: TiO2 nanotubes: synthesis and applications. Angew. Chemie Int. Ed. 50, 2904–2939 (2011)

    Article  Google Scholar 

  • Tvrdy, K., Frantsuzov, P.A., Kamat, P.V.: Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. 108, 29–34 (2011)

    Article  ADS  Google Scholar 

  • Tvrdy, K., Kamat, P.: V: substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces. J. Phys. Chem. A 113, 3765–3772 (2009)

    Article  Google Scholar 

  • Wang, H., Wang, G., Ling, Y., Lepert, M., Wang, C., Zhang, J.Z., Li, Y.: Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4, 1463–1466 (2012)

    Article  ADS  Google Scholar 

  • Xiao, F.-X., Miao, J., Wang, H.-Y., Yang, H., Chen, J., Liu, B.: Electrochemical construction of hierarchically ordered CdSe-sensitized TiO2 nanotube arrays: towards versatile photoelectrochemical water splitting and photoredox applications. Nanoscale 6, 6727–6737 (2014)

    Article  ADS  Google Scholar 

  • Yang, H., Fan, W., Vaneski, A., Susha, A.S., Teoh, W.Y., Rogach, A.L.: Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater. 22, 2821–2829 (2012)

    Article  Google Scholar 

  • Zamfirescu, C., Naterer, G.F., Dincer, I.: Water splitting with a dual photo-electrochemical cell and hybridcatalysis for enhanced solar energy utilization. Int. J. Energy Res. 37, 1175–1186 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Higher Education Malaysia and the Ministry of Higher Education & Scientific Research of Iraq for financial support to Asmaa Kadim Ayal. Special thanks are extended to Department of Chemistry and Department of Physics, Faculty of Science, Universiti Putra Malaysia, and Microscopy Unit, Institute of Bioscience, Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulkarnain Zainal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayal, A.K., Zainal, Z., Lim, HN. et al. Photocurrent enhancement of heat treated CdSe-sensitized titania nanotube photoelectrode. Opt Quant Electron 49, 164 (2017). https://doi.org/10.1007/s11082-017-0985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0985-8

Keywords

Navigation