Skip to main content
Log in

Optical properties of a four-layer waveguiding nanocomposite structure in near-IR regime

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a theoretical study of the optical properties of TE- and TM- modes in a four-layer structure composed of a magneto-optical yttrium iron garnet guiding layer on a dielectric non-magnetic substrate covered by a planar nanocomposite guiding multilayer. We examine important issues for TM-modes, calculate and compare in details the dispersion spectra and the energy flux distributions across the structure for TE- and TM-modes of different orders and show new features concerning the splitting, switching and filtration possibilities of the fundamental modes of the orthogonal polarizations. The presented theoretical approach may be utilized for designing of different magneto-optical devices with preselected optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)

    Google Scholar 

  • Agranovich, V.M., Kravtsov, V.E.: Notes on crystal optics of superlattices. Solid State Commun. 55, 85–90 (1985)

    Article  ADS  Google Scholar 

  • Alaeian, H., Dionne, J.A.: Non-Hermitian nanophotonic and plasmonic waveguides. Phys. Rev. B.  89, 1–9 (2014)

    Article  Google Scholar 

  • Barnoski, M.K.: Introduction to Integrated Optics. Plenum, New York and London (1974)

    Book  Google Scholar 

  • Brekhovskikh, L.M.: Waves in Layered Media. Academic, New York (1980)

    MATH  Google Scholar 

  • Devore, J.R.: Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–419 (1951)

    Article  ADS  Google Scholar 

  • Dotsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F.: Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B. 22, 240–253 (2005)

    Article  ADS  Google Scholar 

  • Gurevich, A.G., Melkov, G.A.: Magnetization Oscillations and Waves. CRC, New York (1996)

    Google Scholar 

  • Haus, J.W. (ed.): Fundamentals and Applications of Nanophotonics, vol. 85. Woodhead Publishing Series in Electronic and Optical Materials, Amsterdam (2016)

    Google Scholar 

  • Hewak, D.W., Lit, J.W.Y.: Generalized dispersion properties of a four-layer thin-film waveguide. Appl. Opt. 26, 833–841 (1987)

    Article  ADS  Google Scholar 

  • Johnson, B., Walton, A.K.: The infra-red refractive index of garnet ferrites. Br. J. Appl. Phys. 16, 475–477 (1965)

    Article  ADS  Google Scholar 

  • Khokhlov, N.E., Prokopov, A.R., Shaposhnikov, A.N., Berzhansky, V.N., Kozhaev, M.A., Andreev, S.N., Ravishankar, A.P., Achanta, V.G., Bykov, D.A., Zvezdin, A.K., Belotelov, V.I.: Photonic crystals with plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity. J. Phys. D: Appl. Phys. 48, 095001 (2015)

    Article  Google Scholar 

  • Khosravi, S., Rostami, A., Rostami, G., Dolatyari, M.: Nanocomposite multilayer structure for broadband MIR negative refractive index. J. Light. Technol. 33, 4171–4175 (2015)

    Article  ADS  Google Scholar 

  • Kudo, M., Mushiake, Y.: Mode selecting characteristics of four-layer dielectric slab waveguide. Radio Sci. 17, 125–134 (1982)

    Article  ADS  Google Scholar 

  • Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965)

    Article  ADS  Google Scholar 

  • Manenkov, A.B.: Propagation of waves in open waveguides with anisotropic dielectrics. Radiophys. Quantum Electron. 24, 60–69 (1981)

    Article  ADS  Google Scholar 

  • Manenkov, A.B.: Optical waveguide with nonlinear walls. Opt. Quantum Electron. 41, 169–180 (2009)

    Article  Google Scholar 

  • Panyaev, I.S., Dadoenkova, N.N., Dadoenkova, Y.S., Rozhleys, I.A., Krawczyk, M., Lyubchanskii, I.L., Sannikov, D.G.: Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime. J. Phys. D: Appl. Phys. 49, 435103 (2016)

    Article  ADS  Google Scholar 

  • Polky, J.N., Mitchell, G.L.: Metal-clad planar dielectric waveguide for integrated optics. J. Opt. Soc. Am. 64, 274–279 (1974)

    Article  ADS  Google Scholar 

  • Randoshkin, V.V., Chervonenkis, A.Y.: Applied Magneto-Optics. Energoatomizdat, Moscow (1990). (in Russian)

    Google Scholar 

  • Rao, R., Tang, T.: Study of an active hybrid gap surface plasmon polariton waveguide with nanoscale confinement size and low compensation gain. J. Phys. D: Appl. Phys. 45, 245101 (2012)

    Article  ADS  Google Scholar 

  • Rytov, S.M.: Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP 2, 446–475 (1956)

    Google Scholar 

  • Scifres, D.R., Streifer, W., Burnham, R.D.: Leaky wave room-temperature double heterostructure GaAs: GaAlAs diode laser. Appl. Phys. Lett. 29, 23–25 (1976)

    Article  ADS  Google Scholar 

  • Smirnova, D.A., Iorsh, I.V., Shadrivov, I.V., Kivshar, Y.S.: Multilayer graphene waveguides. JETP Lett. 99, 456–460 (2014)

    Article  ADS  Google Scholar 

  • Southwell, W.H.: Index profiles for generalized Luneburg lenses and their use in planar optical waveguides. J. Opt. Soc. Am. 67, 1010–1014 (1977)

    Article  ADS  Google Scholar 

  • Stiens, J., De Tandt, C., Ranson, W., Vounckx, R., Demeester, P., Moerman, I.: Experimental study of an In0.53Ga0.47As–InP resonant plasma waveguide modulator for medium-infrared light. Appl. Phys. Lett. 65, 2341–2343 (1994)

    Article  ADS  Google Scholar 

  • Stiens, J., Vounckx, R., Veretennicoff, I., Voronko, A., Shkerdin, G.: Slab plasmon polaritons and waveguide modes in four-layer resonant semiconductor waveguides. J. Appl. Phys. 81, 1–10 (1997)

    Article  ADS  Google Scholar 

  • Sun, M.J., Muller, M.W.: Measurements on four-layer isotropic waveguides. Appl. Opt. 16, 814–815 (1977)

    Article  ADS  Google Scholar 

  • Sylgacheva, D.A., Khokhlov, N.E., Kalish, A.N., Belotelov, V.I.: Magnetic control of waveguide modes of Bragg structures. J. Phys.: Conf. Ser. 714, 12016 (2016a)

    ADS  Google Scholar 

  • Sylgacheva, D., Khokhlov, N., Kalish, A., Dagesyan, S., Prokopov, A., Shaposhnikov, A., Berzhansky, V., Nur-E-Alam, M., Vasiliev, M., Alameh, K., Belotelov, V.: Transverse magnetic field impact on waveguide modes of photonic crystals. Opt. Lett. 41, 3813–3816 (2016b)

    Article  ADS  Google Scholar 

  • Tabib-Azar, M.: Integrated Optics, Microstructures, and Sensors. Kluwer Academic Publishers, Boston, Dordrecht, and London (1995)

    Book  Google Scholar 

  • Tien, P.K., Ulrich, R.: Theory of prism-film coupler and thin-film light guides. J. Opt. Soc. Am. 60, 1325–1337 (1970)

    Article  ADS  Google Scholar 

  • Tien, P.K., Ulrich, R., Martin, R.J.: Modes of propagating light waves in thin deposited semiconductor films. Appl. Phys. Lett. 14, 291–294 (1969)

    Article  ADS  Google Scholar 

  • Tien, P.K., Smolinsky, G., Martin, R.J.: Thin organosilicon films for integrated optics. Appl. Opt. 11, 637–642 (1972)

    Article  ADS  Google Scholar 

  • Tien, P.K., Martin, R.J., Smolinsky, G.: Formation of light-guiding interconnections in an integrated optical circuit by composite tapered-film coupling. Appl. Opt. 12, 1909–1916 (1973)

    Article  ADS  Google Scholar 

  • Torfeh, M., Le Gall, H.: Theoretical analysis of hybrid modes of magnetooptical waveguides. Phys. Status Solidi 63, 247–258 (1981)

    Article  ADS  Google Scholar 

  • Wood, D.L., Nassau, K.: Optical properties of gadolinium gallium garnet. Appl. Opt. 29, 3704–3707 (1990)

    Article  ADS  Google Scholar 

  • Yariv, A., Yeh, P.: Optical Waves in Crystals. Wiley, New York (1984)

    Google Scholar 

  • Yariv, A., Yeh, P.: Photonics: Optical Electronics in Modern Communications. Oxford University, New York and Oxford (2007)

    Google Scholar 

  • Zvezdin, A.K., Kotov, V.A.: Modern Magnetooptics and Magnetooptical Materials. Institute of Physics, Bristol and Philadelphia (1997)

    Book  Google Scholar 

Download references

Acknowledgements

This research has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie (Grant No. 644348 (N.N.D., Yu.S.D., M.K., and I.L.L.), MPNS COST Action (Project No. MP1403 “Nanoscale Quantum Optics” (N.N.D., Yu.S.D., and I.L.L.), the Ministry of Education and Science of Russian Federation (Project No. 14.Z50.31.0015 and No. 3.2202.2014/K) (N.N.D., Yu.S.D., I.S.P., and D.G.S.), and Ukrainian State Fund for Fundamental Research (Project No. Φ71/73-2016 “Multifunctional Photonic Structures”) (I.L.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Sannikov.

Additional information

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling 2016.

Guest edited by Krzysztof Anders, Xuesong Meng, Gregory Morozov, Sendy Phang, and Mariusz Zdanowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyaev, I.S., Dadoenkova, N.N., Dadoenkova, Y.S. et al. Optical properties of a four-layer waveguiding nanocomposite structure in near-IR regime. Opt Quant Electron 48, 556 (2016). https://doi.org/10.1007/s11082-016-0823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0823-4

Keywords

Navigation