Skip to main content
Log in

Engineering Electromagnetic Wave Propagation in Periodically Layered Gyromagnetic Metamaterials with an External Magnetic Field

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tunable transmission characteristics of electromagnetic waves in periodically layered metamaterials (PLMMs), constructed by alternating dielectric layer and gyromagnetic layer such as yttrium-iron-garnet (YIG), are investigated through an external magnetic field. Based on transfer matrix method (TMM) and effective medium theory (EMT), we compare the dispersion curves of TE waves propagating in the PLMMs, and obtain the effective permeability and permittivity tensors of the homogenized gyromagnetic PLMMs by expanding the exact dispersion relation in long-wavelength limit. Then, we calculate some propagating parameters when TE waves incident on the PLMMs by EMT in detail. Numerical results show that the refraction state of TE waves in the PLMMs can be dynamically changed between positive refraction state and cutoff state by controlling the external magnetic field. These exotic properties of gyromagnetic PLMMs may have wide potential applications in many fields such as sub-wavelength all-optical switches and wave cutoff devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tumkur T, Zhu G, Black P, Barnakov YA (2011) Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl Phys Lett 99(15):151115

    Article  CAS  Google Scholar 

  2. Iorsh I, Poddubny A, Orlov A, Belov P, Kivshar YS (2012) Spontaneous emission enhancement in metal-dielectric metamaterials. Phys Lett A 376(3):185–187

    Article  CAS  Google Scholar 

  3. Silveirinha MG, Belov PA, Simovski CR (2007) Subwavelength imaging at infrared frequencies using an array of metallic nanorods. Phys Rev B 75(3):035108

    Article  CAS  Google Scholar 

  4. Chebykin AV, Orlov AA, Vozianova AV, Maslovski SI, Kivshar YS, Belov PA (2011) Nonlocal effective medium model for multilayered metal-dielectric metamaterials. Phys Rev B 84(11): 115438

    Article  CAS  Google Scholar 

  5. Chern RL (2013) Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials. Opt Express 21(14): 16514–16527

    Article  Google Scholar 

  6. Orlov AA, Voroshilov PM, Belov PA, Kivshar YS (2011) Engineered optical nonlocality in nanostructured metamaterials. Phys Rev B 84(4):045424

    Article  CAS  Google Scholar 

  7. Han D, Chern RL (2014) Nonlocal optical properties in periodic lattice of graphene layers. Opt Express 22(4):4817–4829

    Article  CAS  Google Scholar 

  8. Alù A, Argyropoulos C, Monticone F, Estakhri NM (2013) Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt Express 21(12):15037–15047

    Article  Google Scholar 

  9. Li T, Liu H, Wang FM, Dong ZG, Zhu SN, Zhang X (2006) Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on nega- tive refraction transmission. Opt Express 14(23):11155–11163

    Article  CAS  Google Scholar 

  10. Rakhmanov AL, Yampol’Skii VA, Fan JA, Capasso F, Nori F (2010) Layered superconductors as negative-refractive-index metamaterials. Phys Rev B 81(7):075101

    Article  CAS  Google Scholar 

  11. Scalora M, Mattiucci N, D’Aguanno G, Larciprete M, Bloemer MJ (2006) Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting. Phys Rev E 73(1):016603

    Article  CAS  Google Scholar 

  12. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7(12):948

    Article  CAS  Google Scholar 

  13. Kim J, Drachev VP, Jacob Z, Naik GV, Boltasseva A, Narimanov EE, Shalaev VM (2012) Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt Express 20(7):8100–8116

    Article  CAS  Google Scholar 

  14. Yang X, Yao J, Rho J, Yin X, Zhang X (2012) Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat Photonics 6(7):450

    Article  CAS  Google Scholar 

  15. Savelev RS, Shadrivov IV, Belov PA, Rosanov NN, Fedorov SV, Sukhorukov AA, Kivshar YS (2013) Loss compensation in metal-dielectric layered metamaterials. Phys Rev B 87(11):115139

    Article  CAS  Google Scholar 

  16. Tumkur TU, Gu L, Kitur JK, Narimanov EE, Noginov MA (2012) Control of absorption with hyperbolic metamaterials. Appl Phys Lett 100(16):161103

    Article  CAS  Google Scholar 

  17. Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X (2010) Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun 1(9):143

    Article  CAS  Google Scholar 

  18. Ferrari L, Wu C, Lepage D, Zhang X, Liu Z (2015) Hyperbolic metamaterials and their applications. Prog Quant Eletron 40:1–40

    Article  Google Scholar 

  19. Li W, Liu Z, Zhang X, Jiang X (2012) Switchable hyperbolic metamaterials with magnetic control. Appl Phys Lett 100(16):161108

    Article  CAS  Google Scholar 

  20. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331(6015):290–291

    Article  CAS  Google Scholar 

  21. Liu S, Du J, Lin Z, Wu R, Chui ST (2008) Formation of robust and completely tunable resonant photonic band gaps. Phys Rev B 78(15):155101

    Article  CAS  Google Scholar 

  22. Wang Z, Chong YD, Joannopoulos JD, Soljaić M (2007) Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys Rev Lett 100(1):013905

    Article  CAS  Google Scholar 

  23. Pozar DM (2009) Microwave engineering[M]. Wiley

  24. Das J, Song YY, Mo N, Krivosik P, Patton CE (2010) Electric-field-tunable low loss multiferroic ferrimagnetic-ferroelectric heterostructures. Adv Mater 21(20):2045–2049

    Article  CAS  Google Scholar 

  25. Chern RL, Han D, Zhang ZQ, Chan CT (2014) Additional waves in the graphene layered medium. Opt Express 22(26):31677–31690

    Article  CAS  Google Scholar 

  26. Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. Elsevier

Download references

Funding

This work was supported by the Natural Science Foundation of Guangdong Province, China (2016A030313439, 2018A030313480), by GDUPS (2017), and by Key Program for Guangdong NSF of China (2017B030311003), and by the Science and Technology Program of Guangzhou City, China (201707010403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Wang, G. & Deng, D. Engineering Electromagnetic Wave Propagation in Periodically Layered Gyromagnetic Metamaterials with an External Magnetic Field. Plasmonics 14, 1243–1251 (2019). https://doi.org/10.1007/s11468-019-00913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00913-0

Keywords

Navigation