Skip to main content
Log in

Graphene embedded surface plasmon resonance based sensor prediction model

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Exceptional optical and electrical characteristics of graphene based materials attract significant interest of the researchers to develop sensing center of surface plasmon resonance (SPR) based sensors by graphene application. In this research carrier density variant in the form of conductance gradient on graphene based SPR sensor response is modeled. The molecular properties such as electro-negativity, molecular mass, effective group number and effective outer shell factor are engaged. In addition each factor effect in the cumulative carrier variation is explored analytically. The refractive index shift equation based on these factors is defined and related coefficients are proposed. Finally a semi-empirical model for interpretation of changes in SPR curve is suggested and tested for some organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012)

    Article  Google Scholar 

  • Chang, P.-Y., Huang, W.-M., Lin, H.-H.: Impurity-induced conductance anomaly in zigzag carbon nanotube. In: Kes P., Jochemsen R. (eds.) 25th International Conference on Low Temperature Physics, 1–4 (2009)

  • Cheon, S., et al.: How to optically count graphene layers. Opt. Lett. 37(18), 3765–3767 (2012)

    Article  ADS  Google Scholar 

  • Chiu, N.-F., et al.: Graphene oxide-based SPR biosensor chip for immunoassay applications. Nanoscale Res. Lett. 9(1), 1–7 (2014)

    Article  ADS  Google Scholar 

  • Choi, S.H., Kim, Y.L., Byun, K.M.: Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 19(2), 458–466 (2011)

    Article  ADS  Google Scholar 

  • Daghestani, H.N., Day, B.W.: Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors (Basel, Switzerland) 10(11), 9630–9646 (2010)

    Article  Google Scholar 

  • Eda, G., Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)

    Article  Google Scholar 

  • Guo, S., Dong, S.: Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 21(46), 18503–18516 (2011)

    Article  Google Scholar 

  • Hamid, T., et al.: Graphene based surface plasmon resonance bio-sensor modeling. In: Annual International RIAPA Meeting on Low Dimensional Systems, 69–72 (2015)

  • Homola, J., Dostálek, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)

    Book  Google Scholar 

  • Hu, Y., et al.: Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem. Commun. 47(6), 1743–1745 (2011)

    Article  Google Scholar 

  • Jablan, M., Soljacic, M., Buljan, H.: Plasmons in graphene: fundamental properties and potential applications. Proc. IEEE 101(7), 1689–1704 (2013)

    Article  Google Scholar 

  • Johari, P., Shenoy, V.B.: Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9), 7640–7647 (2011)

    Article  Google Scholar 

  • Kyle, J.R., Ozkan, C.S., Ozkan, M.: Industrial graphene metrology. Nanoscale 4(13), 3807–3819 (2012)

    Article  ADS  Google Scholar 

  • Lee, W.-C., et al.: Simple fabrication of glucose biosensor based on Graphene-Nafion composite by amperometric detections. In: 2012 IEEE Sensors Proceedings, pp. 1625–1628 (2012)

  • Liu, J., et al.: Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132(21), 7279–7281 (2010)

    Article  Google Scholar 

  • Maharana, P.K., Jha, R., Palei, S.: Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B Chem. 190, 494–501 (2014a)

    Article  Google Scholar 

  • Maharana, P.K., Srivastava, T., Jha, R.: Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements. J. Phys. D Appl. Phys. 47(38), 1–11 (2014b)

    Article  Google Scholar 

  • Ovchinnikov, V., Shevchenko, A.: Self-organization-based fabrication of stable noble-metal nanostructures on large-area dielectric substrates. J. Chem. 2013, 1–10 (2013)

    Article  Google Scholar 

  • Palacios, T., Hsu, A., Wang, H.: Applications of graphene devices in RF communications. Commun. Mag. IEEE 48(6), 122–128 (2010)

    Article  Google Scholar 

  • Polichetti, T., Miglietta, M.L., Di Francia, G.: Overview on graphene properties, fabrication and applications. Chim Oggi-Chem Today 28(6), 6–9 (2010)

    Google Scholar 

  • Sadrolhosseini, A.R.: Surface plasmon resonance characterization of biodiesel. Ph.D. thesis. Universiti Putra Malaysia (2011)

  • Salihoglu, O., Balci, S., Kocabas, C.: Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl. Phys. Lett. 100(21), 1–5 (2012)

    Article  Google Scholar 

  • Shang, J., et al.: The origin of fluorescence from graphene oxide. Sci. Rep. 2, (2012)

  • Shukla, S., Saxena, S.: Spectroscopic investigation of confinement effects on optical properties of graphene oxide. Appl. Phys. Lett. 98(7), 1–2 (2011)

    Article  Google Scholar 

  • Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010)

    Article  Google Scholar 

  • Song, Y., Feng, M., Zhan, H.: Application of graphene edge effect in electrochemical biosensors. Prog Chem 25(5), 698–706 (2013)

    Google Scholar 

  • Stebunov, Y.V., et al.: Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015)

    Article  Google Scholar 

  • Subramanian, P., et al.: Graphene-coated surface plasmon resonance interfaces for studying the interactions between bacteria and surfaces. ACS Appl. Mater. Interfaces 6(8), 5422–5431 (2014)

    Article  Google Scholar 

  • Tan, Y.B., Lee, J.-M.: Graphene for supercapacitor applications. J. Mater. Chem. A 1(47), 14814–14843 (2013)

    Article  Google Scholar 

  • Tang, L., et al.: Duplex DNA/graphene oxide biointerface: from fundamental understanding to specific enzymatic effects. Adv. Funct. Mater. 22(14), 3083–3088 (2012)

    Article  Google Scholar 

  • Valentini, F., Carbone, M., Palleschi, G.: Graphene oxide nanoribbons (GNO), reduced graphene nanoribbons (GNR), and multi-layers of oxidized graphene functionalized with ionic liquids (GO-IL) for assembly of miniaturized electrochemical devices. Anal. Bioanal. Chem. 405(11), 3449–3474 (2013)

    Article  Google Scholar 

  • Vosgueritchian, M., Lipomi, D.J., Bao, Z.: Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22(2), 421–428 (2012)

    Article  Google Scholar 

  • Wan, Y., et al.: Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors. Anal. Chem. 83(3), 648–653 (2011)

    Article  Google Scholar 

  • Wang, Z., et al.: Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 113(32), 14071–14075 (2009)

    Article  Google Scholar 

  • Woan, G.: The Cambridge Handbook of Physics Formulas. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Wu, L., et al.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)

    Article  ADS  Google Scholar 

  • Yin, Z., et al.: Graphene-based materials for solar cell applications. Adv. Energy Mater. 4(1), 1–19 (2014)

    Google Scholar 

  • Zhao, J., et al.: Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem. Commun. 13(1), 31–33 (2011)

    Article  Google Scholar 

  • Zhou, M., Zhai, Y., Dong, S.: Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81(14), 5603–5613 (2009)

    Article  Google Scholar 

  • Zuppella, P., et al.: Graphene–noble metal bilayers for inverted surface plasmon resonance biosensors. J. Opt. 15(5), 055010 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from research management center (RMC) of Universiti Teknologi Malaysia under visiting associate research professor (VRP) program, also it should be noted that two first authors (Meshginqalam and Toloue) contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taghi Ahmadi.

Appendix: Molecule shape effect

Appendix: Molecule shape effect

For the effective outer shell factor determination, the chemical Structure of Mannose, Lactose, PEI and PSS (Subramanian et al. 2014), should be considered. It is clear that only in the case of PSS molecule there are two dangling bonds, so the related value for parameter “V” is 2 for this material and zero for others (Table 3).

Table 3 The effective outer shell factor determination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshginqalam, B., Toloue, H., Ahmadi, M.T. et al. Graphene embedded surface plasmon resonance based sensor prediction model. Opt Quant Electron 48, 328 (2016). https://doi.org/10.1007/s11082-016-0597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0597-8

Keywords

Navigation