Skip to main content
Log in

Atom position measurement in a four-level Lambda-shaped scheme with twofold lower-levels

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The two-dimensional position dependent probe absorption spectrum of a driven four-level Λ-type atomic system with twofold lower-levels interacting with two orthogonal standing wave laser fields and one microwave field is investigated. It is found that due to the position dependent nature of atom–field interaction, the spatial distribution of the atom can be controlled by scanning the resulting absorption spectra of the weak probe field. The effect of different controlling parameters of the system such as detunings, the intensity of standing wave fields as well as the relative phase of applied fields on the position measurement uncertainty of the atom is then discussed. We show that by properly adjusting the system parameters, different spatial structures of localization as ‘∞’-like, spot-like, deltoid-like and elliptic like patterns can be designed, so that high-precision and high-resolution atom localization can be engineered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abfalterer, R., Keller, C., Bernet, S., Oberthaler, M.K., Schmiedmayer, J., Zeilinger, A.: Nanometer definition of atomic beams with masks of light. Phys. Rev. A 56, R4365–R4368 (1997)

    Article  ADS  Google Scholar 

  • Bai, Y., Yang, W., Yu, X.: Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system. Opt. Commun. 283, 5062–5066 (2010)

    Article  ADS  Google Scholar 

  • Cheng, D., Liu, C., Gong, S.: Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system. Phys. Lett. A 332, 244–249 (2004)

    Article  MATH  ADS  Google Scholar 

  • Ding, C., Li, J., Yang, X.: Radio-frequency control of spontaneous emission from a coherently driven multilevel atom. Opt. Commun. 283, 2705–2715 (2010)

    Article  ADS  Google Scholar 

  • Ding, C., Li, J., Yang, X., Zhan, Z., Liu, J.-B.: Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system. J. Phys. B: At. Mol. Opt. Phys. 44, 145501 (2011a)

    Article  ADS  Google Scholar 

  • Ding, C., Li, J., Yang, X., Zhang, D., Xiong, H.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84(4), 043840 (2011b)

    Article  ADS  Google Scholar 

  • Ding, C.L., Li, J., Zhan, Z., Yang, X.: Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011c)

    Article  ADS  Google Scholar 

  • Hamedi, H.R.: Transient and steady-state properties of asymmetric semiconductor quantum wells at Telecom wavelength bands. JETP Lett. 100(1), 47–58 (2014a)

    Article  ADS  Google Scholar 

  • Hamedi, H.R.: Ultra-slow propagation of light located in ultra-narrow transparency windows through four quantum dot molecules. Laser Phys. Lett. 11, 085201 (2014b)

    Article  ADS  Google Scholar 

  • Hamedi, H.R.: Electron localization in an asymmetric double quantum well nanostructure (II): improvement via Fano-type interference. Phys. B 450, 128–135 (2014c)

    Article  ADS  Google Scholar 

  • Hamedi, H.R.: Transient absorption and lasing without inversion in an artificial molecule via Josephson coupling energy. Laser Phys. Lett. 12, 035201 (2015)

    Article  ADS  Google Scholar 

  • Hamedi, H.R., Juzeliūnas, G., Raheli, A., Sahrai, M.: High refractive index and lasing without inversion in an open four-level atomic system. Opt. Commun. 311, 261–265 (2013a)

    Article  ADS  Google Scholar 

  • Hamedi, H.R., Asadpour, S.H., Sahrai, M.: Giant Kerr nonlinearity in a four-level atomic medium. Optik 124, 366–370 (2013b)

    Article  ADS  Google Scholar 

  • Hamedi, H.R., Radmehr, A., Sahrai, M.: Manipulation of Goos–Hänchen shifts in the atomic configuration of mercury via interacting dark-state resonances. Phys. Rev. A 90, 053836 (2014)

    Article  ADS  Google Scholar 

  • Han, D., Zeng, Y., Bai, Y.: Optical knobs from slow- to fast-light with gain in low-dimensional semiconductor heterostructures. Opt. Commun. 284, 4541–4545 (2011)

    Article  ADS  Google Scholar 

  • Harris, S.E.: Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. Lett. 62, 1033–1036 (1989)

    Article  ADS  Google Scholar 

  • Johnson, K.S., Thywissen, J.H., Dekker, W.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)

    Article  ADS  Google Scholar 

  • Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II. Phys. Rev. A 73, 023813 (2006)

    Article  ADS  Google Scholar 

  • Li, J.-H.: Controllable optical bistability in a four-subband semiconductor quantum well system. Phys. Rev. B 75, 155329 (2007a)

    Article  ADS  Google Scholar 

  • Li, J.H.: Control of spontaneous emission spectra via an external coherent magnetic field in a cycle-configuration atomic medium. Eur. Phys. J. D 42, 467–473 (2007b)

    Article  ADS  Google Scholar 

  • Li, J.-H., Lü, X.-Y., Luo, J.-M., Huang, Q.-J.: Optical bistability and multistability via atomic coherence in an N-type atomic medium. Phys. Rev. A 74, 035801 (2006)

    Article  ADS  Google Scholar 

  • Li, J., Hao, X., Liu, J., Yang, X.: Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference. Phys. Lett. A 372, 716–720 (2008)

    Article  MATH  ADS  Google Scholar 

  • Li, J., Yu, R., Liu, M., Ding, C., Yang, Xiaoxue: Dipole-induced grating in a waveguide-coupled photonic crystal microcavity embedding a driven three-level emitter. Phys. B 406, 3963–3968 (2011a)

    Article  ADS  Google Scholar 

  • Li, J., Yu, R., Liu, M., Ding, C., Yang, X.: Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–3985 (2011b)

    Article  ADS  Google Scholar 

  • Metcalf, H., Van der Straten, P.: Cooling and trapping of neutral atoms. Phys. Rep. 244, 203–286 (1994)

    Article  ADS  Google Scholar 

  • Ou, B.-Q., Liang, L.-M., Li, C.-Z.: Quantum coherence effects in a four-level diamond-shape atomic system. Opt. Commun. 282, 2870–2877 (2009)

    Article  ADS  Google Scholar 

  • Sahrai, M., Tajalli, H., Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72, 013820 (2005)

    Article  ADS  Google Scholar 

  • Sahrai, M., Etemadpour, R., Mahmoudi, M.: Dispersive and absorptive properties of a Λ-type atomic system with two fold lower-levels. Eur. Phys. J. D 59, 463–471 (2010)

    Article  ADS  Google Scholar 

  • Steck D.A.: Rubidium 87 D line data. http://steck.us/alkalidata

  • Storey, P., Collett, M., Walls, D.: Atomic-position resolution by quadrature-field measurement. Phys. Rev. A 47, 405–418 (1993)

    Article  ADS  Google Scholar 

  • Vanier, J., Godone, A., Levi, F.: Coherent population trapping in cesium: dark lines and coherent microwave emission. Phys. Rev. A 58, 2345–2358 (1998)

    Article  ADS  Google Scholar 

  • Wang, Z., Yu, B.: Optical bistability and multistability via dual electromagnetically induced transparency windows. J. Lumin. 132, 2452–2455 (2012)

    Article  Google Scholar 

  • Wang, Z., Yu, B.: High-precision two-dimensional atom localization via quantum interference in a tripod-type system. Laser Phys. Lett. 11, 035201 (2014)

    Article  ADS  Google Scholar 

  • Wang, Z., Chen, A.-X., Bai, Y., Yang, W.-X., Lee, R.-K.: Coherent control of optical bistability in an open-type three-level atomic system. J. Opt. Soc. Am. B 29, 2891–2896 (2012a)

    Article  ADS  Google Scholar 

  • Wang, C.L., Kang, Z.H., Tian, S.C., Wu, J.H.: Control of spontaneous emission from a micro-wave driven atomic system. Opt. Express 20, 3509–3518 (2012b)

    Article  ADS  Google Scholar 

  • Wang, Z., Yu, B., Zhen, S., Wu, X.: Large refractive index without absorption via quantum interference in a semiconductor quantum well. J. Lumin. 134, 272–276 (2013a)

    Article  Google Scholar 

  • Wang, Z., Yu, B., Xu, F., Zhen, S.: Coherent control of two-dimensional probe absorption in semiconductor quantum wells. Appl. Phys. A 112, 443–449 (2013b)

    Article  ADS  Google Scholar 

  • Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A 71, 053820 (2005)

    Article  ADS  Google Scholar 

  • Wu, Y., Cˆot´e, R.: Bistability and quantum fluctuations in coherent photoassociation of a Bose–Einstein condensate. Phys. Rev. A 65, 053603-1–053603-5 (2002)

    ADS  Google Scholar 

  • Wu, Y., Yang, X.: Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime. Phys. Rev. A 70, 053818 (2004)

    Article  ADS  Google Scholar 

  • Wu, Y., Yang, X.: Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  • Wu, Y., Yang, X.: Giant Kerr nonlinearities and solitons in a crystal of molecular magnets. Appl. Phys. Lett. 91, 094104 (2007a)

    Article  ADS  Google Scholar 

  • Wu, Y., Yang, X.: Strong-Coupling Theory of Periodically Driven Two-Level Systems. Phys. Rev. Lett. 98, 013601 (2007b)

    Article  ADS  Google Scholar 

  • Wu, Y., Chu, M.C., Leung, P.T.: Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency. Phys. Rev. A 59, 3032 (1999)

    Article  ADS  Google Scholar 

  • Wu, Y., Payne, M.G., Hagley, E.W., Deng, L.: Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference. Opt. Lett. 29, 2294–2296 (2004)

    Article  ADS  Google Scholar 

  • Xiao, Z.-H., Kim, K.: Optical bistability using quantum coherence in a microwave-driven four-level atomic system. Opt. Commun. 283, 2178–2181 (2010)

    Article  ADS  Google Scholar 

  • Xu, J., Li, Q., Yan, W., Chen, X., Hu, X.: Sub-half-wavelength localization of a two-level atom via trichromatic phase manipulation. Phys. Lett. A 372, 6032–6036 (2008)

    Article  MATH  ADS  Google Scholar 

  • Yang, W.-X., Hou, J.-M., Lee, R.-K.: Ultraslow bright and dark solitons in semiconductor quantum wells. Phys. Rev. A 77, 033838 (2008)

    Article  ADS  Google Scholar 

  • Yang, W.-X., Zha, T.-T., Lee, R.-K.: Giant Kerr nonlinearities and slow optical solitons in coupled double quantum-well nanostructure. Phys. Lett. A 374, 355–359 (2009)

    Article  ADS  Google Scholar 

  • Zhang, D., Li, J., Ding, C., Yang, X.: Control of optical bistability via an elliptically polarized light in a four-level tripod atomic system. Phys. Scr. 85, 035401 (2012)

    Article  ADS  Google Scholar 

  • Zhang, D., Yu, R., Li, J., Ding, C., Yang, X.: Laser-polarization-dependent and magnetically controlled optical bistability in diamond nitrogen-vacancy centers. Phys. Lett. A 377, 2621–2627 (2013)

    Article  ADS  Google Scholar 

  • Zhang, D., Yu, R., Li, J., Hao, X., Yang, X.: Efficient two-dimensional atom localization via phase-sensitive absorption and gain spectra in a cycle-configuration four-level atomic system. Opt. Commun. 321, 138–144 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

H. R. Hamedi gratefully acknowledges the support of Lithuanian Research Council (No. VP1-3.1-ŠMM-01-V-03-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Hamedi.

Appendix

Appendix

Taking into account only the strong driven fields, the effective Hamiltonian in an interaction picture can be expressed as (Sahrai et al. 2005; Kapale and Zubairy 2006)

$$ H = - \hbar \left[ {\begin{array}{*{20}c} { - \Delta_{m} } & {\Omega_{m} e^{i\phi } } & {\Omega_{d} } \\ {\Omega_{m} e^{ - i\phi } } & { - \Delta_{c} } & {\Omega_{c} } \\ {\Omega_{d} } & {\Omega_{c} } & 0 \\ \end{array} } \right] $$
(13)

which is in the basis {\(\left| c \right\rangle\), \(\left| d \right\rangle\), \(\left| b \right\rangle\)}. The above equation leads to the secular equation

$$ \begin{aligned} f(\lambda ) & = \lambda^{3} + (\Delta_{c} + \Delta_{m} )\lambda^{2} + (\Delta_{c} \Delta_{m} - (\Omega_{c}^{2} + \Omega_{d}^{2} + \Omega_{m}^{2} ))\lambda \\ & \quad + 2\Omega_{c} \Omega_{d} \Omega_{m} \cos \phi - \Delta_{c} \Omega_{d}^{2} - \Delta_{m} \Omega_{c}^{2} , \\ \end{aligned} $$
(14)

with λ being the eigenenergies of the Hamiltonian. The positions of dressed sublevels \(\left| {\lambda}_{1} \right\rangle\), \(\left| {\lambda}_{2} \right\rangle\) and \(\left| {\lambda}_{3} \right\rangle\) generated by the driven fields can be obtained by the dressed state eigenvalues λ. Probing \(\left| a \right\rangle\) ↔ \(\left| {\lambda}_{i} \right\rangle\)(i = 1, 2, 3) by the weak probe field, the resonances will occur at the points where the probe frequency matches the energy-level difference between the levels \(\left| a \right\rangle\) and \(\left| {\lambda}_{i} \right\rangle\). If the probe detuning Δ p is chosen to be in resonance with one of the dressed states then it experiences absorption maxima.

Equation 14 shows that the eigenvalues of the three dressed sublevels are dependent on the relative phase ϕ through term 2Ω c Ω d Ω m  cos ϕ. Here, for simplicity, we take Δ c  = Δ m  = 0 and Ω c  = Ω d  = Ω m  = Ω and then, Eq. 14 reads

$$ f(\lambda ) = \lambda^{3} - 3\Omega^{2} \lambda + 2\Omega^{3} \cos \phi . $$
(15)

As a result, for example, when ϕ = 2 , the eigenvalues become λ 1 = λ 2 = Ω and λ 3 = −2Ω, while for ϕ = (2 m + 1)π, they are λ 1 = 2Ω and λ 2 = λ 3 = −Ω. Moreover, for \( \phi = \left( {m + \frac{1}{2}} \right)\pi \), the eigenvalues are \( \lambda_{1} = \sqrt 3 \Omega ,\lambda_{2} = 0,\lambda_{3} = - \sqrt 3 \Omega \) (m integer). Consequently, different contribution of three bare-state levels to the dressed states can lead to different localization patterns and precision of an atom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raheli, A., Sahrai, M. & Hamedi, H.R. Atom position measurement in a four-level Lambda-shaped scheme with twofold lower-levels. Opt Quant Electron 47, 3221–3236 (2015). https://doi.org/10.1007/s11082-015-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0202-6

Keywords

Navigation