Skip to main content
Log in

Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Through shifting the rows adjacent to the line-defect along the waveguide direction, slow light photonic crystal slab waveguides with electro-optic polymer filled holes that show average group indices of 123 and 61.5 are obtained by three-dimensional plane-wave expansion method calculations. It is shown that the slow light properties and the buffering performance are enhanced by using an efficient method based on retreating the anti-crossing point with enlarging the lattice constant. This method has been shown to improve not only the bandwidth and flatten dispersion but also to reduce the variations in slow light properties that could occur due to fabrication inaccuracies. The performance of electro-optic modulation is drastically enhanced by exploiting local field enhancement induced by slow light effect. The buffering performance of the photonic crystal based buffer configurations are investigated and compared in terms of application needs. Since the modulation sensitivities of center wavelength and delay time change linearly with the applied voltage while remaining the buffer capacity and bit length almost constant, the investigated photonic crystal structures show promise for flexible and convenient buffering application in optical communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)

    Article  ADS  Google Scholar 

  • Bagci, F.: Influences of supercell termination and lateral row number on the determination of the slow light properties of photonic crystal waveguides. Optik-Int. J. Light Electron. Opt. 124, 4739–4743 (2013)

  • Bagci, F., Akaoglu, B.: A systematic analysis of hole-size, hole-type and rows shifting on slow light characteristics of photonic crystal waveguides with ring-shaped holes. Optik-Int. J. Light Electron. Opt. 125, 2702–2707 (2014)

  • Brosi, J.-M.: High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008)

    Article  ADS  Google Scholar 

  • Carlsson, N.: Design, nano-fabrication and analysis of near-infrared 2D photonic crystal air-bridge structures. Opt. Quantum Electron. 34, 123–131 (2002)

    Article  Google Scholar 

  • Chen, H.: Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss. Appl. Phys. Lett. 93, 043507-1–043507-3 (2008)

    ADS  Google Scholar 

  • Frandsen, L.H.: Photonic crystal waveguides with semislow light and tailored dispersion properties. Opt. Express 14, 9444–9450 (2006)

    Article  ADS  Google Scholar 

  • Hamachi, Y.: Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. Opt. Lett. 34, 1072–1074 (2009)

    Article  ADS  Google Scholar 

  • Hao, R.: Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Express 18, 16309–16319 (2010a)

  • Hao, R.: Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product. IEEE Photonics Technol. Lett. 22(11), 1041–1135 (2010b)

  • Heijden, R.: InP-based two-dimensional photonic crystals filled with polymers. Appl. Phys. Lett. 88(16), 161112-1–161112-3 (2006)

    ADS  Google Scholar 

  • Hou, J.: Flat band slow light in symmetric line defect photonic crystal waveguides. IEEE Photonics Technol. Lett. 21(20), 1571–1573 (2009)

    Article  ADS  Google Scholar 

  • Hughes, S.: Extrinsic optical scattering loss in photonic crystalwaveguides: role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 94, 033903-1–033903-4 (2005)

    ADS  Google Scholar 

  • Johnson, S.G.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)

    Article  ADS  Google Scholar 

  • Koos, C.: All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009)

    Article  ADS  Google Scholar 

  • Kubo, S.: Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett. 32, 2981–2983 (2007)

    Article  ADS  Google Scholar 

  • Kurt, H.: Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides. Opt. Express 18, 26965–26977 (2010)

    Article  ADS  Google Scholar 

  • Leng, F.-C.: Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides. Opt. Express 18, 5707–5712 (2010)

    Article  Google Scholar 

  • Li, J.T.: Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008)

    Article  ADS  Google Scholar 

  • Liang, J.: Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide. J. Appl. Phys. 110, 063103-1–063103-6 (2011)

    ADS  Google Scholar 

  • Lin, C.-Y.: Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl. Phys. Lett. 97, 093304-1–093304-3 (2010)

    ADS  Google Scholar 

  • Long, F.: Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes. Appl. Opt. 49, 4808–4813 (2010a)

  • Long, F.: A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J. Lightwave Technol. 28, 1139–1143 (2010b)

  • Luo, J.D.: Facile synthesis of highly efficient phenyltetraene-based nonlinear optical chromophores for electrooptics. Org. Lett. 8, 1387–1390 (2006)

    Article  Google Scholar 

  • Ma, J.: Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides. IEEE Photonics Technol. Lett. 20(14), 1237–1239 (2008)

    Article  ADS  Google Scholar 

  • Moreolo, M.S.: Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides. J. Opt. A Pure Appl. Opt. 10, 064002-1–064002-6 (2008)

    ADS  Google Scholar 

  • Natomi, N.: Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902-1–253902-4 (2001)

    ADS  Google Scholar 

  • O’Faolain, L.: Low-loss propagation in photonic crystal waveguides. Electron. Lett. 42(25), 1454–1455 (2006)

    Article  Google Scholar 

  • O’Faolain, L.: Loss engineered slow light waveguides. Opt. Express 18(26), 27627–27638 (2010)

    Article  ADS  Google Scholar 

  • Okawachi, Y.: All-optical slow-light on a photonic chip. Opt. Express 14, 2317–2322 (2006)

    Article  ADS  Google Scholar 

  • Petrov, A.Y.: Zero dispersion at small group velocities in photonic crystal waveguides. Appl. Phys. Lett. 85, 4866–4868 (2004)

    Article  ADS  Google Scholar 

  • Razzari, L.: Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals. Appl. Phys. Lett. 86, 231106-1–231106-3 (2005)

    ADS  Google Scholar 

  • Settle, M.D.: Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007)

    Article  ADS  Google Scholar 

  • Shen, H.J.: Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes. Optik-Int. J. Light Electron. Opt. 122, 1174–1178 (2011)

  • Tian, H.: Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect. Opt. Commun. 285, 2760–2764 (2012)

    Article  ADS  Google Scholar 

  • Tucker, R.S.: Slow-light optical buffers: Capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005)

    Article  ADS  Google Scholar 

  • Wang, F.H.: Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides. J. Lightwave Technol. 26, 1381–1386 (2008)

    Article  ADS  Google Scholar 

  • Wu, J.: Wideband and low dispersion slow light in slotted photonic crystal waveguide. Opt. Commun. 283, 2815–2819 (2010)

    Article  ADS  Google Scholar 

  • Yang, D.: Electro-optic modulation property of slow light in coupled photonic crystal resonator arrays. Opt. Appl. XLI, 753–763 (2011)

    Google Scholar 

  • Zhai, Y.: Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide. J. Lightwave Technol. 29, 3083–3090 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by Scientific Research Projects of Ankara University (BAP) under Grant No. 12B4343011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulya Bagci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagci, F., Akaoglu, B. Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants. Opt Quant Electron 47, 791–806 (2015). https://doi.org/10.1007/s11082-014-9953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9953-8

Keywords

Navigation