Skip to main content
Log in

Slow light engineering in a photonic crystal slab waveguide through optofluidic infiltration and geometric modulation

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a new type of flat-band slow light structure with high group index (n g) and large normalized delay-bandwidth product (NDBP) in a silicon on insulator (SOI) based photonic crystal (PC) slab waveguide with a triangular lattice of circular holes is demonstrated. The dispersion engineering is performed by infiltrating optical fluids with different refractive indices n f in the first row and shifting the second row of air holes adjacent to the PC waveguide (PCW) in the longitudinal direction. In the optimized case, a high NDBP of 0.32 with a group index of 54.55 and a bandwidth of 9.13 nm could be obtained. Furthermore, an ultra-low group velocity dispersion (GVD) in the range of 10–20 s2/m is achieved in all of the structures. These results are obtained by numerical simulations based on three-dimensional (3D) plane wave expansion (PWE) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. F. Krauss, Nat. Photon. 2, 448 (2008).

    Article  ADS  Google Scholar 

  2. T. Baba, Nat. Photon. 2, 465 (2008).

    Article  ADS  Google Scholar 

  3. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton T. P. White, L. O’Faolain, and T. F. Krauss, IEEE J. Sel. Top. Quantum Electron. 16, 344 (2010).

    Article  Google Scholar 

  4. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev. Lett. 94, 073903 (2005).

    Article  ADS  Google Scholar 

  5. R. S. Tucker, P.-Ch. Ku, and C. J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005).

    Article  ADS  Google Scholar 

  6. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Opt. Photon. News 17, 18 (2006).

    Article  ADS  Google Scholar 

  7. T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, Sci. Technol. Adv. Mater. 15, 024602 (2014).

    Article  Google Scholar 

  8. M. Santagiustina, G. Eisenstein, L. Thevenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. de Rossi, S. Sales, K. Yvind, S. Combrie, and J. Bourderionnet, IEEE Photon. Soc. Newslett. 26, 5 (2012).

    Google Scholar 

  9. S. Bakhshi, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, Appl. Opt. 51, 2687 (2012).

    Article  ADS  Google Scholar 

  10. D. M. Beggs, Th. P. White, T. Kampfrath, K. Kuipers, and Th. F. Krauss, Proc. SPIE 7606, 76060N (2010).

    Google Scholar 

  11. F. Hosseinibalam, S. Hassanzadeh, A. Ebnali-Heidari, and C. Karnutsch, Appl. Opt. 51, 568 (2012).

    Article  ADS  Google Scholar 

  12. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature 472, 69 (2011).

    Article  ADS  Google Scholar 

  13. G. Piredda and R. W. Boyd, J. Eur. Opt. Soc. Rapid Publ. 2, 07004 (2007).

    Article  Google Scholar 

  14. J. B. Khurgin, Phys. Rev. A 62, 013821 (2000).

    Article  ADS  Google Scholar 

  15. M. L. Povinelli, S. Johnson, and J. D. Joannopoulos, Opt. Express 13, 7145 (2005).

    Article  ADS  Google Scholar 

  16. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).

    Article  Google Scholar 

  17. Z. Zhu, D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, in Slow Light: Science and Applications, Ed. by J. Khurgin and R. S. Tucker (CRC, Boca Raton, 2008).

    Google Scholar 

  18. Yong Sun, Haitao Jiang, Yaping Yang, Yewen Zhang, Hong Chen, and Shiyao Zhu, Phys. Rev. B 83, 195140 (2011).

    Article  ADS  Google Scholar 

  19. W. Stallings, Data and Computer Communications, 6th ed. (Prentice-Hall, Upper Saddle River, NJ, 2000).

    MATH  Google Scholar 

  20. M. Tokushima and H. Yamada, IEEE J. Quantum Electron. 38, 753 (2002).

    Article  ADS  Google Scholar 

  21. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).

    Article  ADS  Google Scholar 

  22. H. Kurt, D. Yilmaz, A. E. Akosman, and E. Ozbay, Opt. Express 20, 20635 (2012).

    Article  ADS  Google Scholar 

  23. D. Mori and T. Baba, Opt. Express 13, 9398 (2005).

    Article  ADS  Google Scholar 

  24. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, Opt. Express 14, 9444 (2006).

    Article  ADS  Google Scholar 

  25. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, Opt. Express 16, 6227 (2008).

    Article  ADS  Google Scholar 

  26. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, J. Opt. 12, 104004 (2010).

    Article  ADS  Google Scholar 

  27. V. Varmazyari, H. Habibiyan, and H. Ghafoorifard, J. Opt. Soc. Am. B 31, 771 (2014).

    Article  ADS  Google Scholar 

  28. Y. Wan, K. Fu, C. Li, and M. Yun, Opt. Commun. 286, 192 (2013).

    Article  ADS  Google Scholar 

  29. A. Khodamohammadi, H. Khoshsima, V. Fallahi, and M. Sahrai, Appl. Opt. 54, 1002 (2015).

    Article  ADS  Google Scholar 

  30. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, Opt. Express 17, 1628 (2009).

    Article  ADS  Google Scholar 

  31. S. Lu, J. Zhao, and D. Zhang, Appl. Opt. 49, 3930 (2010).

    Article  ADS  Google Scholar 

  32. A. C. Bedoya, P. Domachuk, C. Grillet, C. Monat, E. Magi, E. Li, and B. J. Eggleton, Opt. Express 20, 11046 (2012).

    Article  ADS  Google Scholar 

  33. M. Notomi, K. Yamada, A. Shinya, and J. Takahashi, Phys. Rev. Lett. 87, 253902 (2001).

    Article  ADS  Google Scholar 

  34. M. Janfaza and M. A. Mansouri-Birjandi, Appl. Opt. 52, 8184 (2013).

    Article  ADS  Google Scholar 

  35. S. Johnson and J. Joannopoulos, Opt. Express 8, 173 (2001).

    Article  ADS  Google Scholar 

  36. S. S. Xiao, L. F. Shen, and S. L. He, Phys. Lett. A 313, 132 (2003).

    Article  ADS  Google Scholar 

  37. S. Shi, C. Chen, and D. W. Prather, J. Opt. Soc. Am. A 21, 1769 (2004).

    Article  ADS  Google Scholar 

  38. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).

    Article  ADS  Google Scholar 

  39. J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, and A.-C. Hladky-Hennion, Phys. Rev. B 77, 085415 (2008).

    Article  ADS  Google Scholar 

  40. O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 16, 275 (1999).

    Article  ADS  Google Scholar 

  41. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, Photon. Nanostruct. Fundam. Appl. 1, 1 (2003).

    Article  ADS  Google Scholar 

  42. P. Janes, J. Tidstrom, and L. Thylen, J. Lightwave Technol. 23, 3893 (2005).

    Article  ADS  Google Scholar 

  43. Introduction to Optical Liquids. http://www.cargille.com/opticalintro.shtml.

  44. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 2011).

    MATH  Google Scholar 

  45. Y. Hamachi, S. Kubo, and T. Baba, Opt. Lett. 34, 1072 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khodamohammadi.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 5, pp. 837–844.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodamohammadi, A., Khoshsima, H. & Fallahi, V. Slow light engineering in a photonic crystal slab waveguide through optofluidic infiltration and geometric modulation. J. Exp. Theor. Phys. 124, 712–717 (2017). https://doi.org/10.1134/S1063776117050132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117050132

Navigation