Skip to main content
Log in

Optical properties of an opal with a planar defect fabricated by inverse Schaefer and Langmuir–Blodgett techniques

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A silica monolayer has been introduced between tow artificial silica opals using Langmuir Blodgett and inverse Schaefer transfer techniques. The structure and optical properties of the sandwich structure have been characterized by atomic force microscopy, scanning electron microscopy and specular reflection and transmission spectra. The quality of the defect mode inside the stopband made by inverse Schaefer technique is as good as the one obtained by the most commonly used Langmuir–Blodgett technique. Finite difference time domain simulations have been performed and show very good agreement with experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avoine, A., Hong, P.N., Frederich, H., Frigerio, J-M., Coolen, L., Schwob, C., Nga, P. T., Gallas, B. and Maître, A.: Measurement and modelization of silica opal reflection properties: optical determination of the silica index. Phys. Rev. B 86, 165432 (2012)

  • Avoine, A., Hong, P.N., Frederich, H., Aregahegn, K., Frigerio, J.-M., Coolen, L., Schwob, C., Nga, P.T., Gallas, B., Maître, A.: Measurement and modelization of silica opal optical properties. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015005 (2014)

    Article  Google Scholar 

  • Barth, M., Schuster, R., Gruber, A., Cichos, F.: Imaging single quantum dots in three-dimensional photonic crystals. Phys. Rev. Lett. 96, 243902 (2006)

    Article  ADS  Google Scholar 

  • Diep, L.N., Liang, W.P., Lin, J.H., Hsu, C.C.: Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques. Opt. Express 13, 5331–5337 (2005)

    Article  ADS  Google Scholar 

  • Fan, S.H., Winn, J.N., Devenyi, A., Chen, J.C., Meade, R.D., Joannopoulos, J.D.: Guided and defect modes in periodic dielectric waveguides. J. Opt. Soc. Am. B 12, 1267–1272 (1995)

  • Fink, Y., Winn, J.N., Fan, S.H., Chen, C.P., Michel, J., Joannopoulos, J.D., Thomas, E.L.: A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)

    Article  ADS  Google Scholar 

  • Hong, P.N., Benalloul, P., Coolen, L., Maître, A., Schwob, C.: A sputtered-silica defect layer between two artificial silica opals: an efficient way to engineer well-ordered sandwich structures. J. Mater. Chem. C 1, 5381–5386 (2013)

    Article  Google Scholar 

  • John, S., Quang, T.: Collective switching and inversion without fluctuation of two-level atoms in confined photonic systems. Phys. Rev. Lett. 78, 1888–1891 (1997)

  • Juarez, B.H., Golmayo, D., Postigo, Pa, Lopez, C.: Selective formation of inverted opals by electron-beam lithography. Adv. Mater. 16, 1732–1736 (2004)

    Article  Google Scholar 

  • Knight, J.C., Broeng, J., Birks, T.A., Russell, P.S.J.: Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998)

    Article  Google Scholar 

  • Lee, W., Pruzinsky, S., Braun, P.V.: Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv. Mater. 14, 271–274 (2002)

    Article  Google Scholar 

  • Liu, G.Q., Hu, H.H., Liao, Y.B., Wang, Z.S., Chen, Y., Liu, Z.M.: Synthesis and photonic band gap characterization of high quality photonic crystal heterostructures. Optik Int. J. Light Electron Opt. 122, 9–13 (2011)

    Article  Google Scholar 

  • Lodahl, P., van Driel, A.F., Nikolaev, I.S., Irman, A., Overgaag, K., Vanmaekelbergh, D., Vos, W.L.: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004)

    Article  ADS  Google Scholar 

  • Massé, P., Reculusa, S., Clays, K., Ravaine, S.: Tailoring planar defect in three-dimensional colloidal crystals. Chem. Phys. Lett. 422, 251–255 (2006)

    Article  ADS  Google Scholar 

  • Massé, P., Vallee, R.A.L., Dechezelles, J.-F., Rosselgong, J., Cloutet, E., Cramail, H., Zhao, X.S., Ravaine, S.: Effects of the position of a chemically or size-induced planar defect on the optical properties of colloidal crystals. J. Phys. Chem. C 113, 14487–14492 (2009)

    Article  Google Scholar 

  • Meade, R., Devenyi, A., Joannopoulos, J., Alerhand, O., Smith, D., Kash, K.: Novel applications of photonic band gap materials: Low-loss bends and high Q cavities. J. Appl. Phys. 75, 4753–4755 (1994)

    Article  ADS  Google Scholar 

  • Mekis, A., Chen, J.C., Kurland, I., Fan, S.H., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)

    Article  ADS  Google Scholar 

  • Nikolaev, I.S., Lodahl, P., Vos, W.L.: Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals. Phys. Rev. A 71, 053823 (2005)

  • Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    Article  ADS  MATH  Google Scholar 

  • Palacios-Lidón, E., Galisteo-López, J., Juárez, B., López, C.: Engineered planar defects embedded in opals. Adv. Mater. 16, 341–345 (2004)

    Article  Google Scholar 

  • Pozas, R., Mihi, A., Ocaña, M., Míguez, H.: Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating. Adv. Mater. 18, 1183–1187 (2006)

    Article  Google Scholar 

  • Pruzinsky, S.A., Braun, P.V.: Fabrication and characterization of two-photon polymerized features in colloidal crystals. Adv. Funct. Mater. 15, 1995–2004 (2005)

    Article  Google Scholar 

  • Reculusa, S., Ravaine, S.: Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique. Chem. mater. 23, 598–605 (2003)

    Article  Google Scholar 

  • Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 69, 62–69 (1968)

  • Tétreault, N., Mihi, A., Míguez, H., Rodríguez, I., Ozin, G.A., Meseguer, F., Kitaev, V.: Dielectric planar defects in colloidal photonic crystal films. Adv. Mater. 16, 346–349 (2004)

    Article  Google Scholar 

  • Tétreault, N., Arsenault, A.C., Mihi, A., Wong, S., Kitaev, V., Manners, I., Miguez, H., Ozin, G.: Building tunable planar defects into photonic crystals using polyelectrolyte multilayers. Adv. Mater. 17, 1912–1916 (2005)

    Article  Google Scholar 

  • Vallée, R.A.L., Baert, K., Kolaric, B.Van, der Auweraer, M., Clays, K.: Nonexponential decay of spontaneous emission from an ensemble of molecules in photonic crystals. Phys. Rev. B 76, 045113 (2007)

    Article  ADS  Google Scholar 

  • Vekris, E., Kitaev, V., Freymann, G.V., Perovic, D.D., Aitchison, J.S., Ozin, G.A.: Buried linear extrinsic defects in colloidal photonic crystals. Adv. Mater. 17, 1269–1272 (2005)

    Article  Google Scholar 

  • Vion, C., Barthou, C., Benalloul, P., Schwob, C., Coolen, L., Gruzintev, A., Emel’chenko, G., Masalov, V., Frigerio, J.-M., Maître, A.: Manipulating emission of CdTeSe nanocrystals embedded in 3D photonic crystals. J. Appl. Phys. 105, 113120 (2009)

    Article  ADS  Google Scholar 

  • Wostyn, K., Zhao, Y., Schaetzen, G.D.: Insertion of a two dimensional cavity into a self-assembled colloidal crystal. Langmuir 19, 4465–4468 (2003)

    Article  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yablonovitch, E., Gmitter, T., Meade, R., Rappe, A., Brommer, K., Joannoupoulos, J.: Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991)

    Article  ADS  Google Scholar 

  • Yan, Q., Zhou, Z., Zhao, X., Chua, S.: Line defects embedded in three-dimensional photonic crystals. Adv. Mater. 17, 1917–1920 (2005)

    Article  Google Scholar 

  • Yang, Z.W., Huang, X.G., Sun, L., Zhou, J., Yang, G., Li, B., Yu, C.L.: Energy transfer enhancement in \(\text{ Eu }^{3+}\) doped \(\text{ TbPO }_{4}\) inverse opal photonic crystals. J. Appl. Phys. 105, 083523 (2009)

    Article  ADS  Google Scholar 

  • Zhao, Y., Wostyn, K., de Schaetzen, G., Clays, K., Hellemans, L., Persoons, A., Szekeres, M., Schoonheydt, R.A.: The fabrication of photonic band gap materials with a two-dimensional defect. Appl. Phys. Lett. 82, 3764–3766 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eric Charron (INSP) for the work on the goniometer setup, Emmanuelle Lacaze (INSP) for AFM measurements, Dominique Demaille (INSP) for SEM measurements, Nébéwia Griffete and Claire Mangeney (ITODYS) for their helps on functionalization of silica particles. Kifle Aregahegn and Juan-Sebastian Restrepo for their contributions, during their internship in INSP, respectively on synthesis of silica particles and opals and on simulations. The collaboration between INSP and IMS was supported by a Projet International de Coopération Scientifique (PICS 5724) between CNRS and VAST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, P.N., Bénalloul, P., Guennouni-Assimi, Z. et al. Optical properties of an opal with a planar defect fabricated by inverse Schaefer and Langmuir–Blodgett techniques. Opt Quant Electron 47, 55–65 (2015). https://doi.org/10.1007/s11082-014-9939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9939-6

Keywords

Navigation