Skip to main content
Log in

Defect mode and bandgap properties of a ternary photonic crystal with a nanocomposite defect layer

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A one-dimensional ternary photonic crystal with a defect layer is investigated. It has the structure of silicon dioxide/silicon nitride/polystyrene (SiO2/Si3N4/(C8H8)n). A nanocomposite layer composed of silica and silver nanoparticles is placed at the middle of the photonic crystal as a defect layer. The transmission spectra of s-polarized (TE) and p-polarized (TM) waves through the photonic crystal are studied. The defect mode and the bandgap are both examined with the variation of the defect layer thickness, the number of periods, the filling factor of the silver nanoparticles in the nanocomposite and the angle of incidence. The results show that the number of defect modes and their wavelength positions are strongly dependent on the defect layer thickness and the filling factor. This is a significant phenomenon for potential applications of the photonic crystal as a multi-channel filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E Yablanovitch Phys. Rev. Lett. 58 2059 (1987)

  2. B Lombardet, L Dunbar, R Ferrini and R Houdre J. Opt. Soc. Am. B 22 1179 (2005)

  3. M Hassanzadeh, M Sovizi and M Mohsseni Optik 124 6869 (2013)

    Article  ADS  Google Scholar 

  4. W C Hopman et al. IEEE J. Sel. Topics Quantum Electron 11 11 (2005)

  5. C Nayak, A Aghajamali, and D P Patil Indian J. Phys. 93 401 (2019)

  6. C Nayak, A Aghajamali, A Saha and N Das Int. J. Mod. Phys. B 33 1950219 (2019)

    Article  ADS  Google Scholar 

  7. C Nayak, A Saha and A Aghajamali Indian J. Phys. 92 911 (2018)

  8. C Nayak, C H Costa and K V Phani Kumar IEEE Trans. Plasma Sci. 48 2097 (2020)

  9. A Rashidi, C Nayak, C G Bezerra, C H Costa and F A Pinheiro Appl. Opt. 59 11034 (2020)

  10. A Padhy, R Bandyopadhyay, C H Costa, C G Bezerra and C Nayak J. Opt. Soc. Am. B 37 3801 (2020)

  11. S Guo, C Hu and H Zhang J. Opt. Soc. Am. B 37 2678 (2020)

  12. Y Ma, T Zhang, M Y Mao, D Zhang and H F Zhang Opt. Express 28 39890 (2020)

  13. B F Wan, Z W Zhou, Y Xu and H F Zhang IEEE Sens. J. 21 331 (2021)

  14. B F Wan, Y Xu, Z W Zhou, D Zhang and H F Zhang IEEE Sens. J. 21 2846 (2021)

  15. C P Wen, W Liu and J W Wu Appl. Phys. A 126 426 (2020)

  16. Z Li, Z Ge, X Y Zhang, Z Y Hu, D Zhao, J W Wu Indian J. Phys. 93 511 (2019)

  17. M Qiu et al. Appl. Phys. Lett. 83 5121 (2003)

  18. A Bruyant, G Lerondel, P J Reece and M Gal Appl. Phys. Lett. 82 3227 (2003)

  19. M Nomura, S Lwamoto, N Kumagai and Y Arakawa Physica E Low Dimens. Syst. Nanostruct. 40 1800 (2008)

  20. K D Chang and C Y Liu Opt. Commun.316 10 (2014)

  21. M Sovizi and M K Omrani Optik 144 300 (2017)

    Article  ADS  Google Scholar 

  22. B Behzadi, M Aliannezhadi, M Hossein-Zadeh and R K Jain J. Opt. Soc. Am. B 34 2501 (2017)

  23. D Gauden, E Goyat, A Mugnier, P Lesueur, P Yvernault and D Pureur IEEE Photon. Technol. Lett. 15 1387 (2003)

  24. R Y Tang, J W Wu and B Nakarmi Quant Electron, 46 7 640 (2016)

  25. F S Chaves and H V Posada Physica C 553 1 (2018)

    Article  ADS  Google Scholar 

  26. S A Taya et al. Indian J. Phys. DOI: https://doi.org/10.1007/s12648-021-02151-9

  27. L Gonzalez and N P Montenegro Physica E 44 773 (2012)

    Article  ADS  Google Scholar 

  28. S A Taya and S A Shaheen Indian J. Phys. 92 4 519 (2018)

  29. P Mahmoudi and M Solaimani Indian J. Phys. (2021). https://doi.org/10.1007/s12648-020-01990-2

    Article  Google Scholar 

  30. A Nazarov, M Ney and I Abdulhalim Opt. Express 28 9288 (2020)

  31. V S Revathy et al. Optik 176 78 (2019)

  32. A H Aly and Z A Zaky Cryogenics 104 102991 (2019)

  33. X Y Jiang, D Xiao-Yu and W Shuang-chun Optoelectron. Lett. 15 144 (2007)

  34. C J Wu, Y H Chung and B J Syu Progress In Electromagnetics Research 102 81(2010)

  35. P Sarkar, A Panda, and G Palai Indian J. Phys. 93 1495 (2019)

Download references

Acknowledgements

The authors deeply acknowledge the financial support of the Arab Fund for Economic and Social Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofyan A. Taya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doghmosh, N., Taya, S.A., Nassar, Z.M. et al. Defect mode and bandgap properties of a ternary photonic crystal with a nanocomposite defect layer. Indian J Phys 97, 225–233 (2023). https://doi.org/10.1007/s12648-021-02249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02249-0

Keywords

Navigation